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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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Abstract

Research in texture recognition often concentrates on the
problem of material recognition in uncluttered conditions,
an assumption rarely met by applications. In this work we
conduct a first study of material and describable texture at-
tributes recognition in clutter, using a new dataset derived
from the OpenSurface texture repository. Motivated by the
challenge posed by this problem, we propose a new texture
descriptor, FV-CNN, obtained by Fisher Vector pooling of a
Convolutional Neural Network (CNN) filter bank. FV-CNN
substantially improves the state-of-the-art in texture, mate-
rial and scene recognition. Our approach achieves 79.8%
accuracy on Flickr material dataset and 81% accuracy on
MIT indoor scenes, providing absolute gains of more than
10% over existing approaches. FV-CNN easily transfers
across domains without requiring feature adaptation as for
methods that build on the fully-connected layers of CNNs.
Furthermore, FV-CNN can seamlessly incorporate multi-
scale information and describe regions of arbitrary shapes
and sizes. Our approach is particularly suited at localiz-
ing “stuff” categories and obtains state-of-the-art results
on MSRC segmentation dataset, as well as promising results
on recognizing materials and surface attributes in clutter on
the OpenSurfaces dataset.

1. Introduction
Texture is ubiquitous and provides useful cues of mate-

rial properties of objects and their identity, especially when
shape is not useful. Hence, a significant amount of effort in
the computer vision community has gone into recognizing
texture via tasks such as texture perception [1, 2, 12, 13]
and description [7, 11], material recognition [26, 36, 37],
segmentation [20, 29], and even synthesis [9, 43].

Perhaps the most studied task in texture understanding
is the one of material recognition, as captured in bench-
marks such as CuRET [8], KTH-TIPS [5], and, more re-
cently, FMD [38]. However, while at least the FMD dataset
contains images collected from the Internet, vividly dubbed
“images in the wild”, all these datasets make the simplifying

banded blotchy chequered grid

marbled paisley paisley wrinkled

brick ceramic carpet fabric

Figure 1. Texture recognition in clutter. Example of top re-
trieved texture segments by attributes (top two rows) and materials
(bottom) in the OpenSurfaces dataset.

assumption that textures fill images. Thus, they are not nec-
essarily representative of the significantly harder problem
of recognising materials in natural images, where textures
appear in clutter. Building on a recent dataset collected by
the computer graphics community, the first contribution of
this paper is a large-scale analysis of material and percep-
tual texture attribute recognition and segmentation in clut-
ter (Fig. 1 and Sect. 2).

Motivated by the challenge posed by recognising texture
in clutter, we develop a new texture descriptor. In the sim-
plest terms a texture is characterized by the arrangement of
local patterns, as captured in early works [26, 41] by the
distribution of local “filter bank” responses. These filter
banks were designed to capture edges, spots and bars at
different scales and orientations. Typical combinations of
the filter responses, identified by vector quantisation, were
used as the computational basis of the “textons” proposed
by Julesz [22]. Texton distributions were the early versions
of “bag-of-words” representations, a dominant approach in
recognition in the early 2000s, since then improved by new
pooling schemes such as soft-assignment [27, 42, 48] and
Fisher Vectors (FVs) [32]. Until recently, FV with SIFT
features [28] as a local representation was the state-of-the-
art method for recognition, not only for textures, but for
objects and scenes too.

Later, however, Convolutional Neural Networks (CNNs)
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Abstract

In this paper we evaluate the quality of the activation

layers of a convolutional neural network (CNN) for the gen-

eration of object proposals. We generate hypotheses in a

sliding-window fashion over different activation layers and

show that the final convolutional layers can find the object

of interest with high recall but poor localization due to the

coarseness of the feature maps. Instead, the first layers of

the network can better localize the object of interest but with

a reduced recall. Based on this observation we design a

method for proposing object locations that is based on CNN

features and that combines the best of both worlds. We build

an inverse cascade that, going from the final to the initial

convolutional layers of the CNN, selects the most promising

object locations and refines their boxes in a coarse-to-fine

manner. The method is efficient, because i) it uses the same

features extracted for detection, ii) it aggregates features

using integral images, and iii) it avoids a dense evaluation

of the proposals due to the inverse coarse-to-fine cascade.

The method is also accurate; it outperforms most of the

previously proposed object proposals approaches and when

plugged into a CNN-based detector produces state-of-the-

art detection performance.

1. Introduction

In recent years, the paradigm of generating a reduced
set of object location hypotheses (or window candidates)
to be evaluated with a powerful classifier has become very
popular in object detection. Most of the recent state-of-
the-art detection methods [6, 12, 14, 25] are based on such
proposals. Using limited number of these proposals also
helps with weakly supervised learning, in particular learn-
ing to localize objects without any bounding box annota-
tions [7, 22]. This approach can be seen as a two-stage
cascade: First, selection of a reduced set of promising and

∗A. Ghodrati and A.Diba contributed equally to this work
†This work was carried out while he was in KU Leuven ESAT-PSI.
‡LEAR project, Inria Grenoble Rhone-Alpes, LJK, CNRS, Univ.

Grenoble Alpes, France.

Figure 1: DeepProposal object proposal framework. Our
method uses deep convolutional layers features in a
coarse-to-fine inverse cascading to obtain possible object
proposals in an image. Starting from dense proposal sam-
pling from the last convolutional layer (layer 5) we grad-
ually filter irrelevant boxes until the initial layers of the
net (layer 2). In the last stage we use contours extracted
from layer 2, to refine the proposals. Finally the generated
boxes can be used within an object detection pipeline.

class-independent hypotheses and second, a class-specific
classification of each hypothesis. This pipeline has the ad-
vantage that, similarly to sliding window, it casts the detec-
tion problem to a classification problem. However, in con-
trast to sliding window, more powerful and time consuming
detectors can be employed as the number of candidate win-
dows is reduced.

Methods for the generation of the window candidates are
based on two very different approaches. The first approach
uses bottom-up cues like image segmentation [3, 23], object
edges and contours [28] for window generation. The second
approach is based on top-down cues which learn to separate
correct object hypotheses from other possible window loca-
tions [1, 5]. So far, the latter strategy seems to have inferior
performance. In this paper we show that, with the proper
features, accurate and fast top-down window proposals can
be generated.

We consider for this task the convolutional neural net-
work (CNN) “feature maps” extracted from the intermedi-
ate convolutional layers of the Alexnet [18] trained on 1000
classes of ImageNet. In the first part of this work we present
a performance analysis of different CNN layers for gener-
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Figure 1. Texture recognition in clutter. Example of top re-
trieved texture segments by attributes (top two rows) and materials
(bottom) in the OpenSurfaces dataset.
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essarily representative of the significantly harder problem
of recognising materials in natural images, where textures
appear in clutter. Building on a recent dataset collected by
the computer graphics community, the first contribution of
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tual texture attribute recognition and segmentation in clut-
ter (Fig. 1 and Sect. 2).
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local patterns, as captured in early works [26, 41] by the
distribution of local “filter bank” responses. These filter
banks were designed to capture edges, spots and bars at
different scales and orientations. Typical combinations of
the filter responses, identified by vector quantisation, were
used as the computational basis of the “textons” proposed
by Julesz [22]. Texton distributions were the early versions
of “bag-of-words” representations, a dominant approach in
recognition in the early 2000s, since then improved by new
pooling schemes such as soft-assignment [27, 42, 48] and
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features [28] as a local representation was the state-of-the-
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objects and scenes too.
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Deep learning for image retrieval

Figure 9: Sample search results using CroW features compressed to just d “ 32 dimensions. The query image is shown at
the leftmost side with the query bounding box marked in a red rectangle.

Figure 10: A sample search result using CroW features with d “ 512 dimensions. Below each result is the corresponding
spatial weight map. The query image is shown at the leftmost side with the query bounding box marked in a red rectangle.
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Abstract—In this paper, we categorize fine-grained images
without using any object/part annotation (weakly-supervised)
neither in the training nor in the testing stage, but with only
class labels for training images, a step towards making it suitable
for wide deployments. Fine-grained image categorization aims to
classify objects with only subtle distinctions (e.g., two breeds
of dogs that look alike.) Most existing works heavily rely on
object/part detectors to build the correspondence between object
parts, which require accurate object or object part annotations
at least for training images. The need for expensive object
annotations prevents the wide usage of these methods. Instead,
we propose to generate multi-scale part proposals from object
proposals, select useful part proposals, and use them to compute a
global image representation for categorization. This is specially
designed for the weakly-supervised fine-grained categorization
task, because useful parts have been shown to play a critical role
in existing annotation-dependent works but accurate part detec-
tors are hard to acquire. With the proposed image representation,
we can further detect and visualize the key (most discriminative)
parts in objects of different classes. In the experiments, the pro-
posed weakly-supervised method achieves comparable or better
accuracy than state-of-the-art weakly-supervised methods and
most existing annotation-dependent methods on three challenging
datasets. Its success suggests that it is not always necessary
to learn expensive object/part detectors in fine-grained image
categorization.

Index Terms—Fine-grained categorization, annotation free,
part selection.

I. INTRODUCTION

Fine-grained image categorization has been popular during
the past few years. Different from traditional general image
recognition such as scene or object recognition, fine-grained
categorization deals with images with only subtle distinctions,
which usually involves the classification of subclasses of
objects belonging to the same class like birds [1], [2], [3],
[4], dogs [5], planes [6], plants [7], [8], [9], etc. As shown
in Fig. 1, fine-grained categorization needs to discriminate
objects that are visually similar to each other. In the red box of
Fig. 1, Siberian Husky and Malamute are two breeds of dogs,
which might be difficult to distinguish even for humans that

Y. Zhang is with the Bioinformatics Institute, A*SATR, Singapore. E-mail:
zhangyu@bii.a-star.edu.sg.

X.-S. Wei and J. Wu are with the National Key Laboratory for Novel
Software Technology, Nanjing University, Nanjing 210023, China. E-mail:
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J. Cai is with the School of Computer Engineering, Nanyang Technological
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M. N. Do is with the University of Illinois at Urbana-Champaign, Urbana,
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Fig. 1. Fine-grained categorization vs. general image categorization. Fine-
grained categorization (red box) processes visually similar objects, e.g.,
to recognize Siberian Husky and Malamute. General image categorization
usually distinguishes an object such as dogs (red box) from other objects that
are visually very different (e.g., a kangaroo).

are not experts of dogs. However, general image categorization
is comparatively much easier, e.g., most people can easily
recognize that the red box in Fig. 1 contains dogs while the
blue box contains a kangaroo. Image representations that used
to be useful for general image categorization may fail in fine-
grained image categorization, especially when the objects are
not well aligned, e.g., the two dogs are in different pose
and the backgrounds are cluttered. Therefore, fine-grained
categorization requires methods that are more discriminative
than those for general image classification.

Fine-grained categorization has wide applications in both in-
dustry and research societies. Different datasets have been con-
structed in different domains, e.g., birds [1], butterflies [10],
cars [11], etc. These datasets can have significant social
impacts, e.g., butterflies [10] are used to evaluate the forest
ecosystem and climate change.

One important common feature of many existing fine-
grained methods is that they explicitly use annotations of an

object or even object parts to depict the object as precisely as
possible. Bounding boxes of objects and / or object parts are
the most commonly used annotations. Most of them heavily
rely on object / part detectors to find the part correspondence
among objects.

For example, in [12], [13], the poselet [14] is used to detect
object parts. Then, each object is represented with a bag of
poselets, and suitable matchings among poselets (parts) could
be found between two objects. Instead of using poselets, [15]
used the deformable part models (DPM) [16] for object part
detection. In [15] DPM is learned from the annotated object
parts in training objects, which is then applied on testing
objects to detect parts. Some works [17], [18] transfer the
part annotations from objects in training images to those
sharing similar shapes in testing images. Instead of seeking
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Abstract

Fine-grained classification is challenging because cate-
gories can only be discriminated by subtle and local dif-
ferences. Variances in the pose, scale or rotation usually
make the problem more difficult. Most fine-grained clas-
sification systems follow the pipeline of finding foreground
object or object parts (where) to extract discriminative fea-
tures (what).

In this paper, we propose to apply visual attention to fine-
grained classification task using deep neural network. Our
pipeline integrates three types of attention: the bottom-up
attention that propose candidate patches, the object-level
top-down attention that selects relevant patches to a certain
object, and the part-level top-down attention that localizes
discriminative parts. We combine these attentions to train
domain-specific deep nets, then use it to improve both the
what and where aspects. Importantly, we avoid using ex-
pensive annotations like bounding box or part information
from end-to-end. The weak supervision constraint makes
our work easier to generalize.

We have verified the effectiveness of the method on
the subsets of ILSVRC2012 dataset and CUB200 2011
dataset. Our pipeline delivered significant improvements
and achieved the best accuracy under the weakest super-
vision condition. The performance is competitive against
other methods that rely on additional annotations.

1. Introduction

Fine-grained classification is to recognize subordinate-
level categories under some basic-level category, e.g., clas-
sifying different bird types [22], dog breeds [11], flower
species [15], aircraft models [14] etc. This is an impor-
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Figure 1. Illustration of the difficulty of fine-grained classification
: large intra-class variance and small inter-class variance.

tant problem with wide applications. Even in the ILSVR-
C2012 1K categories, there are 118 and 59 categories un-
der the dog and bird class, respectively. Counter intuitively,
intra-class variance can be larger than inter-class, as shown
in Figure 1. Consequently, fine-grained classification are
technically challenging.

Specifically, the difficulty of fine-grained classification
comes from the fact that discriminative features are local-
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Weakly Supervised Fine-Grained Categorization
with Part-Based Image Representation
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Abstract—In this paper, we categorize fine-grained images
without using any object/part annotation (weakly-supervised)
neither in the training nor in the testing stage, but with only
class labels for training images, a step towards making it suitable
for wide deployments. Fine-grained image categorization aims to
classify objects with only subtle distinctions (e.g., two breeds
of dogs that look alike.) Most existing works heavily rely on
object/part detectors to build the correspondence between object
parts, which require accurate object or object part annotations
at least for training images. The need for expensive object
annotations prevents the wide usage of these methods. Instead,
we propose to generate multi-scale part proposals from object
proposals, select useful part proposals, and use them to compute a
global image representation for categorization. This is specially
designed for the weakly-supervised fine-grained categorization
task, because useful parts have been shown to play a critical role
in existing annotation-dependent works but accurate part detec-
tors are hard to acquire. With the proposed image representation,
we can further detect and visualize the key (most discriminative)
parts in objects of different classes. In the experiments, the pro-
posed weakly-supervised method achieves comparable or better
accuracy than state-of-the-art weakly-supervised methods and
most existing annotation-dependent methods on three challenging
datasets. Its success suggests that it is not always necessary
to learn expensive object/part detectors in fine-grained image
categorization.

Index Terms—Fine-grained categorization, annotation free,
part selection.

I. INTRODUCTION

Fine-grained image categorization has been popular during
the past few years. Different from traditional general image
recognition such as scene or object recognition, fine-grained
categorization deals with images with only subtle distinctions,
which usually involves the classification of subclasses of
objects belonging to the same class like birds [1], [2], [3],
[4], dogs [5], planes [6], plants [7], [8], [9], etc. As shown
in Fig. 1, fine-grained categorization needs to discriminate
objects that are visually similar to each other. In the red box of
Fig. 1, Siberian Husky and Malamute are two breeds of dogs,
which might be difficult to distinguish even for humans that
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Fig. 1. Fine-grained categorization vs. general image categorization. Fine-
grained categorization (red box) processes visually similar objects, e.g.,
to recognize Siberian Husky and Malamute. General image categorization
usually distinguishes an object such as dogs (red box) from other objects that
are visually very different (e.g., a kangaroo).

are not experts of dogs. However, general image categorization
is comparatively much easier, e.g., most people can easily
recognize that the red box in Fig. 1 contains dogs while the
blue box contains a kangaroo. Image representations that used
to be useful for general image categorization may fail in fine-
grained image categorization, especially when the objects are
not well aligned, e.g., the two dogs are in different pose
and the backgrounds are cluttered. Therefore, fine-grained
categorization requires methods that are more discriminative
than those for general image classification.

Fine-grained categorization has wide applications in both in-
dustry and research societies. Different datasets have been con-
structed in different domains, e.g., birds [1], butterflies [10],
cars [11], etc. These datasets can have significant social
impacts, e.g., butterflies [10] are used to evaluate the forest
ecosystem and climate change.

One important common feature of many existing fine-
grained methods is that they explicitly use annotations of an

object or even object parts to depict the object as precisely as
possible. Bounding boxes of objects and / or object parts are
the most commonly used annotations. Most of them heavily
rely on object / part detectors to find the part correspondence
among objects.

For example, in [12], [13], the poselet [14] is used to detect
object parts. Then, each object is represented with a bag of
poselets, and suitable matchings among poselets (parts) could
be found between two objects. Instead of using poselets, [15]
used the deformable part models (DPM) [16] for object part
detection. In [15] DPM is learned from the annotated object
parts in training objects, which is then applied on testing
objects to detect parts. Some works [17], [18] transfer the
part annotations from objects in training images to those
sharing similar shapes in testing images. Instead of seeking
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Abstract

Fine-grained classification is challenging because cate-
gories can only be discriminated by subtle and local dif-
ferences. Variances in the pose, scale or rotation usually
make the problem more difficult. Most fine-grained clas-
sification systems follow the pipeline of finding foreground
object or object parts (where) to extract discriminative fea-
tures (what).

In this paper, we propose to apply visual attention to fine-
grained classification task using deep neural network. Our
pipeline integrates three types of attention: the bottom-up
attention that propose candidate patches, the object-level
top-down attention that selects relevant patches to a certain
object, and the part-level top-down attention that localizes
discriminative parts. We combine these attentions to train
domain-specific deep nets, then use it to improve both the
what and where aspects. Importantly, we avoid using ex-
pensive annotations like bounding box or part information
from end-to-end. The weak supervision constraint makes
our work easier to generalize.

We have verified the effectiveness of the method on
the subsets of ILSVRC2012 dataset and CUB200 2011
dataset. Our pipeline delivered significant improvements
and achieved the best accuracy under the weakest super-
vision condition. The performance is competitive against
other methods that rely on additional annotations.

1. Introduction

Fine-grained classification is to recognize subordinate-
level categories under some basic-level category, e.g., clas-
sifying different bird types [22], dog breeds [11], flower
species [15], aircraft models [14] etc. This is an impor-
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Figure 1. Illustration of the difficulty of fine-grained classification
: large intra-class variance and small inter-class variance.

tant problem with wide applications. Even in the ILSVR-
C2012 1K categories, there are 118 and 59 categories un-
der the dog and bird class, respectively. Counter intuitively,
intra-class variance can be larger than inter-class, as shown
in Figure 1. Consequently, fine-grained classification are
technically challenging.

Specifically, the difficulty of fine-grained classification
comes from the fact that discriminative features are local-
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Abstract—In this paper, we categorize fine-grained images
without using any object/part annotation (weakly-supervised)
neither in the training nor in the testing stage, but with only
class labels for training images, a step towards making it suitable
for wide deployments. Fine-grained image categorization aims to
classify objects with only subtle distinctions (e.g., two breeds
of dogs that look alike.) Most existing works heavily rely on
object/part detectors to build the correspondence between object
parts, which require accurate object or object part annotations
at least for training images. The need for expensive object
annotations prevents the wide usage of these methods. Instead,
we propose to generate multi-scale part proposals from object
proposals, select useful part proposals, and use them to compute a
global image representation for categorization. This is specially
designed for the weakly-supervised fine-grained categorization
task, because useful parts have been shown to play a critical role
in existing annotation-dependent works but accurate part detec-
tors are hard to acquire. With the proposed image representation,
we can further detect and visualize the key (most discriminative)
parts in objects of different classes. In the experiments, the pro-
posed weakly-supervised method achieves comparable or better
accuracy than state-of-the-art weakly-supervised methods and
most existing annotation-dependent methods on three challenging
datasets. Its success suggests that it is not always necessary
to learn expensive object/part detectors in fine-grained image
categorization.

Index Terms—Fine-grained categorization, annotation free,
part selection.

I. INTRODUCTION

Fine-grained image categorization has been popular during
the past few years. Different from traditional general image
recognition such as scene or object recognition, fine-grained
categorization deals with images with only subtle distinctions,
which usually involves the classification of subclasses of
objects belonging to the same class like birds [1], [2], [3],
[4], dogs [5], planes [6], plants [7], [8], [9], etc. As shown
in Fig. 1, fine-grained categorization needs to discriminate
objects that are visually similar to each other. In the red box of
Fig. 1, Siberian Husky and Malamute are two breeds of dogs,
which might be difficult to distinguish even for humans that
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Fig. 1. Fine-grained categorization vs. general image categorization. Fine-
grained categorization (red box) processes visually similar objects, e.g.,
to recognize Siberian Husky and Malamute. General image categorization
usually distinguishes an object such as dogs (red box) from other objects that
are visually very different (e.g., a kangaroo).

are not experts of dogs. However, general image categorization
is comparatively much easier, e.g., most people can easily
recognize that the red box in Fig. 1 contains dogs while the
blue box contains a kangaroo. Image representations that used
to be useful for general image categorization may fail in fine-
grained image categorization, especially when the objects are
not well aligned, e.g., the two dogs are in different pose
and the backgrounds are cluttered. Therefore, fine-grained
categorization requires methods that are more discriminative
than those for general image classification.

Fine-grained categorization has wide applications in both in-
dustry and research societies. Different datasets have been con-
structed in different domains, e.g., birds [1], butterflies [10],
cars [11], etc. These datasets can have significant social
impacts, e.g., butterflies [10] are used to evaluate the forest
ecosystem and climate change.

One important common feature of many existing fine-
grained methods is that they explicitly use annotations of an

object or even object parts to depict the object as precisely as
possible. Bounding boxes of objects and / or object parts are
the most commonly used annotations. Most of them heavily
rely on object / part detectors to find the part correspondence
among objects.

For example, in [12], [13], the poselet [14] is used to detect
object parts. Then, each object is represented with a bag of
poselets, and suitable matchings among poselets (parts) could
be found between two objects. Instead of using poselets, [15]
used the deformable part models (DPM) [16] for object part
detection. In [15] DPM is learned from the annotated object
parts in training objects, which is then applied on testing
objects to detect parts. Some works [17], [18] transfer the
part annotations from objects in training images to those
sharing similar shapes in testing images. Instead of seeking
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Abstract

Scaling up fine-grained recognition to all domains of

fine-grained objects is a challenge the computer vision com-

munity will need to face in order to realize its goal of recog-

nizing all object categories. Current state-of-the-art tech-

niques rely heavily upon the use of keypoint or part annota-

tions, but scaling up to hundreds or thousands of domains

renders this annotation cost-prohibitive for all but the most

important categories. In this work we propose a method for

fine-grained recognition that uses no part annotations. Our

method is based on generating parts using co-segmentation

and alignment, which we combine in a discriminative mix-

ture. Experimental results show its efficacy, demonstrating

state-of-the-art results even when compared to methods that

use part annotations during training.

1. Introduction

Models of fine-grained recognition have made great
progress in recognizing an ever-increasing number of cat-
egories. Performance on one standard dataset [44] has in-
creased from 10.3% [44] to 75.7% [6] in only three years.
On the data side, there has also been progress in expand-
ing the set of fine-grained domains we have data for, which
now includes e.g. birds [44, 47, 4], aircraft [42, 34], cars
[41, 27, 32], flowers [35, 1], leaves [30], and dogs [25, 33].

Compared to generic object recognition, fine-grained
recognition benefits more from learning critical parts of the
objects that can help align objects of the same class and dis-
criminate between neighboring classes [3, 16, 52, 10, 13].
Current state-of-the-art results are, therefore, from mod-
els that require part annotations as part of the supervised
training process [51, 6]. This poses a problem for scaling
up fine-grained recognition to an increasing number of do-
mains.

Towards the goal of training fine-grained classifiers with-
out part annotations, we make an important observation.
Fig 1 illustrates our idea. Objects in a fine-grained class
share a high degree of shape similarity, allowing them to be
aligned via segmentation alone. If we can align them early

Figure 1. In fine-grained recognition, categories share similar

shapes, which allows for alignment to be done purely based on

segmentation.

in the training process, we can learn the characteristic parts
without the annotation effort.

In this work, we propose a method to generate parts
which can be detected in novel images and learn which
parts are useful for recognition. Our method for generating
parts leverages recent progress in co-segmentation [22, 29]
to segment the training images. We then densely align im-
ages which are similar in pose, performing alignment across
all images as the composition of these more reliable local
alignments. Despite using fewer annotations, our method is
state-of-the-art on the competitive CUB-2011 dataset [44]
when using a VGGNet [40] for feature extraction, is on par
with current state-of-the-art even when using a weaker Caf-
feNet [23] architecture, and is furthermore able to gener-
alize to fine-grained domains which do not have part an-
notations, establishing a new state-of-the-art on the cars-
196 [27] dataset by a large margin.

The remainder of the paper is organized as follows: We
review related work in Sec. 2 and describe our method for
generating parts in Sec. 3. Our use of these parts for recog-
nition is covered in Sec. 4. We present experiments and
analysis on the CUB-2011 and cars-196 datasets in Sec. 5
and conclude with future work in Sec. 6.
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state-of-the-art results even when compared to methods that

use part annotations during training.

1. Introduction

Models of fine-grained recognition have made great
progress in recognizing an ever-increasing number of cat-
egories. Performance on one standard dataset [44] has in-
creased from 10.3% [44] to 75.7% [6] in only three years.
On the data side, there has also been progress in expand-
ing the set of fine-grained domains we have data for, which
now includes e.g. birds [44, 47, 4], aircraft [42, 34], cars
[41, 27, 32], flowers [35, 1], leaves [30], and dogs [25, 33].

Compared to generic object recognition, fine-grained
recognition benefits more from learning critical parts of the
objects that can help align objects of the same class and dis-
criminate between neighboring classes [3, 16, 52, 10, 13].
Current state-of-the-art results are, therefore, from mod-
els that require part annotations as part of the supervised
training process [51, 6]. This poses a problem for scaling
up fine-grained recognition to an increasing number of do-
mains.

Towards the goal of training fine-grained classifiers with-
out part annotations, we make an important observation.
Fig 1 illustrates our idea. Objects in a fine-grained class
share a high degree of shape similarity, allowing them to be
aligned via segmentation alone. If we can align them early

Figure 1. In fine-grained recognition, categories share similar

shapes, which allows for alignment to be done purely based on
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in the training process, we can learn the characteristic parts
without the annotation effort.

In this work, we propose a method to generate parts
which can be detected in novel images and learn which
parts are useful for recognition. Our method for generating
parts leverages recent progress in co-segmentation [22, 29]
to segment the training images. We then densely align im-
ages which are similar in pose, performing alignment across
all images as the composition of these more reliable local
alignments. Despite using fewer annotations, our method is
state-of-the-art on the competitive CUB-2011 dataset [44]
when using a VGGNet [40] for feature extraction, is on par
with current state-of-the-art even when using a weaker Caf-
feNet [23] architecture, and is furthermore able to gener-
alize to fine-grained domains which do not have part an-
notations, establishing a new state-of-the-art on the cars-
196 [27] dataset by a large margin.

The remainder of the paper is organized as follows: We
review related work in Sec. 2 and describe our method for
generating parts in Sec. 3. Our use of these parts for recog-
nition is covered in Sec. 4. We present experiments and
analysis on the CUB-2011 and cars-196 datasets in Sec. 5
and conclude with future work in Sec. 6.
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The proposed method
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Figure 1. Pipeline of the proposed SCDA method. (Best viewed in color.)

annotations are expensive and unrealistic in many real applications. In answer
to this di�culty, there are attempts to categorize fine-grained images with only
image-level labels, e.g., [6–9].

In this paper, we handle a more challenging but more realistic task, i.e., Fine-
Grained Image Retrieval (FGIR). In FGIR, given database images of the same
species (e.g., birds, flowers or dogs) and a query, we should return images which
are in the same variety as the query, without resorting to any other supervision
signal. FGIR is useful in applications such as biological research and bio-diversity
protection. FGIR is also di↵erent from and di�cult than general-purpose image
retrieval. Objects in fine-grained images have only subtle di↵erences, and vary
in poses, scales and rotations.

To meet these challenges, we propose the Selective Convolutional Descrip-
tor Aggregation (SCDA) method, which automatically localizes the main object
in fine-grained images and extracts discriminative representations for them. In
SCDA, only a pre-trained CNN model (from ImageNet which is not fine-grained)
is used and we use absolutely no supervision. As shown in Fig. 1, the pre-trained
CNN model first extracts convolution activations for an input image. We pro-
pose a novel approach to determine which part of the activations are useful (i.e.,
to localize the object). These useful descriptors are then aggregated and dimen-
sionality reduced to form a vector representation using practices we propose in
SCDA. Finally, a nearest neighbor search ends the FGIR process.

We conducted extensive experiments on four popular fine-grained datasets,
i.e., CUB200-2011 [10], Stanford Dogs [11], Oxford Flowers 102 [12] and Oxford-
IIIT Pets [13] for image retrieval. In addition, we also report the classification
accuracy of the SCDA method, which only uses the image labels. Both retrieval
and classification experiments verify the e↵ectiveness of SCDA. The key advan-
tages and major contributions of our method are:
1. We propose a simple yet e↵ective approach to localize the main object. This

localization is unsupervised, without utilizing bounding boxes, image labels,
object proposals, or additional learning. SCDA selects only useful deep de-
scriptors and removes background or noise, which benefits the retrieval task.
For example, SCDA’s retrieval mAP on Oxford Flowers is 77.56%, signifi-
cantly higher than the baseline without descriptor selection (70.73%). With
the ensemble of multiple CNN layers and the proposed dimensionality re-
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fine-grained applications. For example, a bird protection project may not want
to find dog images given a bird query. To our best knowledge, this is the first
attempt to fine-grained image retrieval using deep learning.

3 Selective Convolutional Descriptor Aggregation

In this paper, we follow the notations in [24]. The term “feature map” indicates
the convolution results of one channel; the term “activations” indicates feature
maps of all channels in a convolution layer; and the term “descriptor” indicates
the d-dimensional component vector of activations. “pool

5

” refers to the activa-
tions of the max-pooled last convolution layer, and “fc

8

” refers to the activations
of the last fully connected layer.

Given an input image I of size H ⇥ W , the activations of a convolution
layer are formulated as an order-3 tensor T with h ⇥ w ⇥ d elements, which
include a set of 2-D feature maps S = {Sn} (n = 1, . . . , d). Sn of size h ⇥ w is
the nth feature map of the corresponding channel. From another point of view,
T can be also considered as having h ⇥ w cells and each cell contains one d-
dimensional deep descriptor. We denote the deep descriptors as X =

�

x

(i,j)

 

,
where (i, j) is a particular cell (i 2 {1, . . . , h} , j 2 {1, . . . , w} ,x

(i,j) 2 Rd). For
instance, by employing the popular pre-trained VGG-16 model [25] to extract
deep descriptors, we can get a 7⇥ 7⇥ 512 activation tensor in pool

5

if the input
image is 224⇥224. Thus, on one hand, for this image, we have 512 feature maps
(i.e., Sn) of size 7⇥ 7; on the other hand, 49 deep descriptors of 512-d are also
obtained.

3.1 Selecting Convolutional Descriptors

What distinguishes SCDA from existing deep learning-based image retrieval
methods is: using only the pre-trained model, SCDA is able to find useful deep
convolutional features, which in e↵ect localizes the main object in the image and
discards irrelevant and noisy image regions. Note that the pre-trained model is
not fine-tuned using the target fine-grained dataset. In the following, we propose
our descriptor selection method, and then present quantitative and qualitative
localization results.

Descriptor Selection After obtaining the pool
5

activations, the input image
I is represented by an order-3 tensor T , which is a sparse and distributed repre-
sentation [26, 27].1 In Fig. 2, we show four images taken from two fine-grained

1 The distributed representation argument claims that concepts are encoded by a
distributed pattern of activities spread across multiple neurons [28]. In deep neural
networks, a distributed representation means a many-to-many relationship between
two types of representations (i.e., concepts and neurons): Each concept is represented
by a pattern of activity distributed over many neurons, and each neuron participates
in the representation of many concepts [26, 27].
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fine-grained applications. For example, a bird protection project may not want
to find dog images given a bird query. To our best knowledge, this is the first
attempt to fine-grained image retrieval using deep learning.

3 Selective Convolutional Descriptor Aggregation

In this paper, we follow the notations in [24]. The term “feature map” indicates
the convolution results of one channel; the term “activations” indicates feature
maps of all channels in a convolution layer; and the term “descriptor” indicates
the d-dimensional component vector of activations. “pool

5

” refers to the activa-
tions of the max-pooled last convolution layer, and “fc

8

” refers to the activations
of the last fully connected layer.

Given an input image I of size H ⇥ W , the activations of a convolution
layer are formulated as an order-3 tensor T with h ⇥ w ⇥ d elements, which
include a set of 2-D feature maps S = {Sn} (n = 1, . . . , d). Sn of size h ⇥ w is
the nth feature map of the corresponding channel. From another point of view,
T can be also considered as having h ⇥ w cells and each cell contains one d-
dimensional deep descriptor. We denote the deep descriptors as X =

�

x

(i,j)

 

,
where (i, j) is a particular cell (i 2 {1, . . . , h} , j 2 {1, . . . , w} ,x

(i,j) 2 Rd). For
instance, by employing the popular pre-trained VGG-16 model [25] to extract
deep descriptors, we can get a 7⇥ 7⇥ 512 activation tensor in pool

5

if the input
image is 224⇥224. Thus, on one hand, for this image, we have 512 feature maps
(i.e., Sn) of size 7⇥ 7; on the other hand, 49 deep descriptors of 512-d are also
obtained.

3.1 Selecting Convolutional Descriptors

What distinguishes SCDA from existing deep learning-based image retrieval
methods is: using only the pre-trained model, SCDA is able to find useful deep
convolutional features, which in e↵ect localizes the main object in the image and
discards irrelevant and noisy image regions. Note that the pre-trained model is
not fine-tuned using the target fine-grained dataset. In the following, we propose
our descriptor selection method, and then present quantitative and qualitative
localization results.

Descriptor Selection After obtaining the pool
5

activations, the input image
I is represented by an order-3 tensor T , which is a sparse and distributed repre-
sentation [26, 27].1 In Fig. 2, we show four images taken from two fine-grained

1 The distributed representation argument claims that concepts are encoded by a
distributed pattern of activities spread across multiple neurons [28]. In deep neural
networks, a distributed representation means a many-to-many relationship between
two types of representations (i.e., concepts and neurons): Each concept is represented
by a pattern of activity distributed over many neurons, and each neuron participates
in the representation of many concepts [26, 27].
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fine-grained applications. For example, a bird protection project may not want
to find dog images given a bird query. To our best knowledge, this is the first
attempt to fine-grained image retrieval using deep learning.

3 Selective Convolutional Descriptor Aggregation

In this paper, we follow the notations in [24]. The term “feature map” indicates
the convolution results of one channel; the term “activations” indicates feature
maps of all channels in a convolution layer; and the term “descriptor” indicates
the d-dimensional component vector of activations. “pool

5

” refers to the activa-
tions of the max-pooled last convolution layer, and “fc

8

” refers to the activations
of the last fully connected layer.

Given an input image I of size H ⇥ W , the activations of a convolution
layer are formulated as an order-3 tensor T with h ⇥ w ⇥ d elements, which
include a set of 2-D feature maps S = {Sn} (n = 1, . . . , d). Sn of size h ⇥ w is
the nth feature map of the corresponding channel. From another point of view,
T can be also considered as having h ⇥ w cells and each cell contains one d-
dimensional deep descriptor. We denote the deep descriptors as X =

�

x

(i,j)

 

,
where (i, j) is a particular cell (i 2 {1, . . . , h} , j 2 {1, . . . , w} ,x

(i,j) 2 Rd). For
instance, by employing the popular pre-trained VGG-16 model [25] to extract
deep descriptors, we can get a 7⇥ 7⇥ 512 activation tensor in pool

5

if the input
image is 224⇥224. Thus, on one hand, for this image, we have 512 feature maps
(i.e., Sn) of size 7⇥ 7; on the other hand, 49 deep descriptors of 512-d are also
obtained.

3.1 Selecting Convolutional Descriptors

What distinguishes SCDA from existing deep learning-based image retrieval
methods is: using only the pre-trained model, SCDA is able to find useful deep
convolutional features, which in e↵ect localizes the main object in the image and
discards irrelevant and noisy image regions. Note that the pre-trained model is
not fine-tuned using the target fine-grained dataset. In the following, we propose
our descriptor selection method, and then present quantitative and qualitative
localization results.

Descriptor Selection After obtaining the pool
5

activations, the input image
I is represented by an order-3 tensor T , which is a sparse and distributed repre-
sentation [26, 27].1 In Fig. 2, we show four images taken from two fine-grained

1 The distributed representation argument claims that concepts are encoded by a
distributed pattern of activities spread across multiple neurons [28]. In deep neural
networks, a distributed representation means a many-to-many relationship between
two types of representations (i.e., concepts and neurons): Each concept is represented
by a pattern of activity distributed over many neurons, and each neuron participates
in the representation of many concepts [26, 27].
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fine-grained applications. For example, a bird protection project may not want
to find dog images given a bird query. To our best knowledge, this is the first
attempt to fine-grained image retrieval using deep learning.

3 Selective Convolutional Descriptor Aggregation

In this paper, we follow the notations in [24]. The term “feature map” indicates
the convolution results of one channel; the term “activations” indicates feature
maps of all channels in a convolution layer; and the term “descriptor” indicates
the d-dimensional component vector of activations. “pool

5

” refers to the activa-
tions of the max-pooled last convolution layer, and “fc

8

” refers to the activations
of the last fully connected layer.

Given an input image I of size H ⇥ W , the activations of a convolution
layer are formulated as an order-3 tensor T with h ⇥ w ⇥ d elements, which
include a set of 2-D feature maps S = {Sn} (n = 1, . . . , d). Sn of size h ⇥ w is
the nth feature map of the corresponding channel. From another point of view,
T can be also considered as having h ⇥ w cells and each cell contains one d-
dimensional deep descriptor. We denote the deep descriptors as X =

�

x

(i,j)

 

,
where (i, j) is a particular cell (i 2 {1, . . . , h} , j 2 {1, . . . , w} ,x

(i,j) 2 Rd). For
instance, by employing the popular pre-trained VGG-16 model [25] to extract
deep descriptors, we can get a 7⇥ 7⇥ 512 activation tensor in pool

5

if the input
image is 224⇥224. Thus, on one hand, for this image, we have 512 feature maps
(i.e., Sn) of size 7⇥ 7; on the other hand, 49 deep descriptors of 512-d are also
obtained.

3.1 Selecting Convolutional Descriptors

What distinguishes SCDA from existing deep learning-based image retrieval
methods is: using only the pre-trained model, SCDA is able to find useful deep
convolutional features, which in e↵ect localizes the main object in the image and
discards irrelevant and noisy image regions. Note that the pre-trained model is
not fine-tuned using the target fine-grained dataset. In the following, we propose
our descriptor selection method, and then present quantitative and qualitative
localization results.

Descriptor Selection After obtaining the pool
5

activations, the input image
I is represented by an order-3 tensor T , which is a sparse and distributed repre-
sentation [26, 27].1 In Fig. 2, we show four images taken from two fine-grained

1 The distributed representation argument claims that concepts are encoded by a
distributed pattern of activities spread across multiple neurons [28]. In deep neural
networks, a distributed representation means a many-to-many relationship between
two types of representations (i.e., concepts and neurons): Each concept is represented
by a pattern of activity distributed over many neurons, and each neuron participates
in the representation of many concepts [26, 27].
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Figure 1. Pipeline of the proposed SCDA method. (Best viewed in color.)

annotations are expensive and unrealistic in many real applications. In answer
to this di�culty, there are attempts to categorize fine-grained images with only
image-level labels, e.g., [6–9].

In this paper, we handle a more challenging but more realistic task, i.e., Fine-
Grained Image Retrieval (FGIR). In FGIR, given database images of the same
species (e.g., birds, flowers or dogs) and a query, we should return images which
are in the same variety as the query, without resorting to any other supervision
signal. FGIR is useful in applications such as biological research and bio-diversity
protection. FGIR is also di↵erent from and di�cult than general-purpose image
retrieval. Objects in fine-grained images have only subtle di↵erences, and vary
in poses, scales and rotations.

To meet these challenges, we propose the Selective Convolutional Descrip-
tor Aggregation (SCDA) method, which automatically localizes the main object
in fine-grained images and extracts discriminative representations for them. In
SCDA, only a pre-trained CNN model (from ImageNet which is not fine-grained)
is used and we use absolutely no supervision. As shown in Fig. 1, the pre-trained
CNN model first extracts convolution activations for an input image. We pro-
pose a novel approach to determine which part of the activations are useful (i.e.,
to localize the object). These useful descriptors are then aggregated and dimen-
sionality reduced to form a vector representation using practices we propose in
SCDA. Finally, a nearest neighbor search ends the FGIR process.

We conducted extensive experiments on four popular fine-grained datasets,
i.e., CUB200-2011 [10], Stanford Dogs [11], Oxford Flowers 102 [12] and Oxford-
IIIT Pets [13] for image retrieval. In addition, we also report the classification
accuracy of the SCDA method, which only uses the image labels. Both retrieval
and classification experiments verify the e↵ectiveness of SCDA. The key advan-
tages and major contributions of our method are:
1. We propose a simple yet e↵ective approach to localize the main object. This

localization is unsupervised, without utilizing bounding boxes, image labels,
object proposals, or additional learning. SCDA selects only useful deep de-
scriptors and removes background or noise, which benefits the retrieval task.
For example, SCDA’s retrieval mAP on Oxford Flowers is 77.56%, signifi-
cantly higher than the baseline without descriptor selection (70.73%). With
the ensemble of multiple CNN layers and the proposed dimensionality re-
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The 468−th channel The 375−th channel The 284−th channelThe 108−th channel

The 481−th channel The 245−th channel The 6−th channel The 163−th channel

Figure 2. Sampled feature maps of four fine-grained images. Although we resize the
images for better visualization, our method can deal with images of any resolution.
(The figure is best viewed in color.)

datasets, CUB200-2011 [10] and Stanford Dogs [11]. We randomly sample sev-
eral feature maps from the 512 feature maps in pool

5

and overlay them to original
images for better visualization. As can be seen from Fig. 2, the activated regions
of the sampled feature map (highlighted in warm color) may indicate semanti-
cally meaningful parts of birds or dogs, but can also indicate some background
or noisy parts in these fine-grained images.

In addition, the semantic meanings of the activated regions are quite di↵erent
even for the same channel. For example, in the 468th feature map for birds,
the activated region in the first image indicates the Artic tern’s claws and the
second does the hummingbird ’s head. In the 163th feature map for dogs, the first
indicates the toy terrier ’s mouth, while the second even has no activated region
for the Shetland sheepdog. More examples can be found in the supplementary
material. In addition, there are also some activated regions representing the
background, e.g., the 108th feature map for hummingbird and the 481th one
for Shetland sheepdog. Fig. 2 conveys that not all deep descriptors are useful,
and one single channel contains at best weak semantic information due to the
distributed nature of this representation. Therefore, selecting and using only
useful deep descriptors (and removing noise) is necessary. However, in order to
decide which deep descriptor is useful (i.e., containing the object we want to
retrieve), we cannot count on any single channel individually.

We propose a simple yet e↵ective method (shown in Fig. 4) whose quan-
titative and qualitative evaluation will be demonstrated in the next section.
Although one single channel is not very useful, if many channels fire at the same
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(a) Input image
(e) The largest connected
component of the mask map

(d) Mask map(c) Activation map(b) Feature maps

Figure 4. Selecting useful deep convolutional descriptors. (Best viewed in color.)

Therefore, we use fM to select useful and meaningful deep convolutional de-
scriptors. The descriptor x

(i,j) should be kept when fMi,j = 1, while fMi,j = 0
means the position (i, j) might have background or noisy parts:

F =
n

x

(i,j)|fMi,j = 1
o

, (2)

where F stands for the selected descriptor set, which will be aggregated into the
final representation for retrieving fine-grained images. The whole convolutional
descriptor selection process is illustrated in Fig. 4.

Qualitative Evaluation In this section, we give the qualitative evaluation of
the proposed descriptor selection process. Because the two fine-grained datasets
(i.e., CUB200-2011 and Stanford Dogs) supply the ground-truth bounding box
for each image, it is desirable to evaluate the proposed method for object local-
ization. However, as seen in Fig. 3, the detected regions are irregular shaped.
So, the minimum rectangle bounding boxes which contain the detected regions
are returned as our object localization predictions. We evaluate the proposed
method to localize the whole-object (birds or dogs) on their test sets. Example
predictions can be seen in Fig. 5. From these figures, the predicted bounding
boxes approximate the ground-truth ones, and even some results are better than
the ground truth. For instance, in the second dog image shown in Fig. 5, the
predicted bounding box can cover both dogs; and in the third one, the predicted
box contains less background, which is beneficial to retrieval performance. How-
ever, since we utilize no supervision, some details of the fine-grained objects, e.g.,
birds’ tails, cannot be contained accurately by the predicted bounding boxes.

Quantitative Evaluation In addition, we also report the results in terms of the
Percentage of Correctly Localized Parts (PCP) metric in Table 1. The reported
metrics are the percentage of whole-object boxes that are correctly localized
with a >50% IOU with the ground-truth bounding boxes. In this table, we also
show the PCP results of two fine-grained parts (i.e., head and torso) reported in
some previous part localization based fine-grained classification algorithms [4,
5,29]. Because our method do not require any supervision, we can just compare
the whole-object localization rates with that of fine-grained parts for a rough

Obtaining the activation map by summarizing feature maps
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(a) Visualization of the mask map M

(b) Visualization of the mask map 

Figure 3. Visualization of the mask map M and the corresponding largest connected
component fM . The selected regions are highlighted in red. (Best viewed in color.)

region, we could expect this region to be an object rather than the background.
Therefore, in the proposed method, we add up the obtained pool

5

activation
tensor through the depth direction. Thus, the h ⇥ w ⇥ d 3-D tensor becomes
an h ⇥ w 2-D tensor, which we call the “activation map”, i.e., A =

Pd
n=1

Sn

(where Sn is the nth feature map in pool
5

). For the activation map A, there are
h ⇥ w summed activation responses, corresponding to h ⇥ w positions. Based
on the aforementioned observation, it is straightforward to say that the higher
activation response a particular position (i, j) is, the more possibility of its cor-
responding region being part of the object. Then, we calculate the mean value
ā of all the positions in A as the threshold to decide which positions localize
objects: the position (i, j) whose activation response is higher than ā indicates
the main object, e.g., birds or dogs, might appear in that position. A mask map
M of the same size as A can be obtained as:

Mi,j =

(

1 if Ai,j > ā

0 otherwise
, (1)

where (i, j) is a particular position in these h⇥ w positions.
The figures in the first row of Fig. 3 show some examples of the mask maps

for birds and dogs. In these figures, we first resize the mask map M using the
bicubic interpolation, such that its size is the same as the input image. We then
overlay the corresponding mask map (highlighted in red) onto original images.
Even though the proposed method does not train on these datasets, the main
objects (birds or dogs) can be roughly detected. But, as can be seen from the
2nd, 3rd and 5th figure in the first row, there are still several small noisy parts
activated on complicated background. Fortunately, because the noisy parts are
usually smaller than the main object, we collect the largest connected component
of M , which is denoted as fM , to get rid of the interference caused by noisy parts.
In the second row, the main objects are kept by fM , while the noisy parts are
discarded, e.g., the plant and the water bottle.
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Figure 4. Selecting useful deep convolutional descriptors. (Best viewed in color.)

Therefore, we use fM to select useful and meaningful deep convolutional de-
scriptors. The descriptor x

(i,j) should be kept when fMi,j = 1, while fMi,j = 0
means the position (i, j) might have background or noisy parts:

F =
n

x

(i,j)|fMi,j = 1
o

, (2)

where F stands for the selected descriptor set, which will be aggregated into the
final representation for retrieving fine-grained images. The whole convolutional
descriptor selection process is illustrated in Fig. 4.

Qualitative Evaluation In this section, we give the qualitative evaluation of
the proposed descriptor selection process. Because the two fine-grained datasets
(i.e., CUB200-2011 and Stanford Dogs) supply the ground-truth bounding box
for each image, it is desirable to evaluate the proposed method for object local-
ization. However, as seen in Fig. 3, the detected regions are irregular shaped.
So, the minimum rectangle bounding boxes which contain the detected regions
are returned as our object localization predictions. We evaluate the proposed
method to localize the whole-object (birds or dogs) on their test sets. Example
predictions can be seen in Fig. 5. From these figures, the predicted bounding
boxes approximate the ground-truth ones, and even some results are better than
the ground truth. For instance, in the second dog image shown in Fig. 5, the
predicted bounding box can cover both dogs; and in the third one, the predicted
box contains less background, which is beneficial to retrieval performance. How-
ever, since we utilize no supervision, some details of the fine-grained objects, e.g.,
birds’ tails, cannot be contained accurately by the predicted bounding boxes.

Quantitative Evaluation In addition, we also report the results in terms of the
Percentage of Correctly Localized Parts (PCP) metric in Table 1. The reported
metrics are the percentage of whole-object boxes that are correctly localized
with a >50% IOU with the ground-truth bounding boxes. In this table, we also
show the PCP results of two fine-grained parts (i.e., head and torso) reported in
some previous part localization based fine-grained classification algorithms [4,
5,29]. Because our method do not require any supervision, we can just compare
the whole-object localization rates with that of fine-grained parts for a rough

Obtaining the activation map by summarizing feature maps
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(a) Visualization of the mask map M

(b) Visualization of the mask map 

Figure 3. Visualization of the mask map M and the corresponding largest connected
component fM . The selected regions are highlighted in red. (Best viewed in color.)

region, we could expect this region to be an object rather than the background.
Therefore, in the proposed method, we add up the obtained pool

5

activation
tensor through the depth direction. Thus, the h ⇥ w ⇥ d 3-D tensor becomes
an h ⇥ w 2-D tensor, which we call the “activation map”, i.e., A =

Pd
n=1

Sn

(where Sn is the nth feature map in pool
5

). For the activation map A, there are
h ⇥ w summed activation responses, corresponding to h ⇥ w positions. Based
on the aforementioned observation, it is straightforward to say that the higher
activation response a particular position (i, j) is, the more possibility of its cor-
responding region being part of the object. Then, we calculate the mean value
ā of all the positions in A as the threshold to decide which positions localize
objects: the position (i, j) whose activation response is higher than ā indicates
the main object, e.g., birds or dogs, might appear in that position. A mask map
M of the same size as A can be obtained as:

Mi,j =

(

1 if Ai,j > ā

0 otherwise
, (1)

where (i, j) is a particular position in these h⇥ w positions.
The figures in the first row of Fig. 3 show some examples of the mask maps

for birds and dogs. In these figures, we first resize the mask map M using the
bicubic interpolation, such that its size is the same as the input image. We then
overlay the corresponding mask map (highlighted in red) onto original images.
Even though the proposed method does not train on these datasets, the main
objects (birds or dogs) can be roughly detected. But, as can be seen from the
2nd, 3rd and 5th figure in the first row, there are still several small noisy parts
activated on complicated background. Fortunately, because the noisy parts are
usually smaller than the main object, we collect the largest connected component
of M , which is denoted as fM , to get rid of the interference caused by noisy parts.
In the second row, the main objects are kept by fM , while the noisy parts are
discarded, e.g., the plant and the water bottle.
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Figure 3. Visualization of the mask map M and the corresponding largest connected
component fM . The selected regions are highlighted in red. (Best viewed in color.)
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Therefore, in the proposed method, we add up the obtained pool
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activation
tensor through the depth direction. Thus, the h ⇥ w ⇥ d 3-D tensor becomes
an h ⇥ w 2-D tensor, which we call the “activation map”, i.e., A =

Pd
n=1

Sn

(where Sn is the nth feature map in pool
5

). For the activation map A, there are
h ⇥ w summed activation responses, corresponding to h ⇥ w positions. Based
on the aforementioned observation, it is straightforward to say that the higher
activation response a particular position (i, j) is, the more possibility of its cor-
responding region being part of the object. Then, we calculate the mean value
ā of all the positions in A as the threshold to decide which positions localize
objects: the position (i, j) whose activation response is higher than ā indicates
the main object, e.g., birds or dogs, might appear in that position. A mask map
M of the same size as A can be obtained as:

Mi,j =

(

1 if Ai,j > ā

0 otherwise
, (1)

where (i, j) is a particular position in these h⇥ w positions.
The figures in the first row of Fig. 3 show some examples of the mask maps

for birds and dogs. In these figures, we first resize the mask map M using the
bicubic interpolation, such that its size is the same as the input image. We then
overlay the corresponding mask map (highlighted in red) onto original images.
Even though the proposed method does not train on these datasets, the main
objects (birds or dogs) can be roughly detected. But, as can be seen from the
2nd, 3rd and 5th figure in the first row, there are still several small noisy parts
activated on complicated background. Fortunately, because the noisy parts are
usually smaller than the main object, we collect the largest connected component
of M , which is denoted as fM , to get rid of the interference caused by noisy parts.
In the second row, the main objects are kept by fM , while the noisy parts are
discarded, e.g., the plant and the water bottle.
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Figure 3. Visualization of the mask map M and the corresponding largest connected
component fM . The selected regions are highlighted in red. (Best viewed in color.)

region, we could expect this region to be an object rather than the background.
Therefore, in the proposed method, we add up the obtained pool

5

activation
tensor through the depth direction. Thus, the h ⇥ w ⇥ d 3-D tensor becomes
an h ⇥ w 2-D tensor, which we call the “activation map”, i.e., A =

Pd
n=1

Sn

(where Sn is the nth feature map in pool
5

). For the activation map A, there are
h ⇥ w summed activation responses, corresponding to h ⇥ w positions. Based
on the aforementioned observation, it is straightforward to say that the higher
activation response a particular position (i, j) is, the more possibility of its cor-
responding region being part of the object. Then, we calculate the mean value
ā of all the positions in A as the threshold to decide which positions localize
objects: the position (i, j) whose activation response is higher than ā indicates
the main object, e.g., birds or dogs, might appear in that position. A mask map
M of the same size as A can be obtained as:

Mi,j =

(

1 if Ai,j > ā

0 otherwise
, (1)

where (i, j) is a particular position in these h⇥ w positions.
The figures in the first row of Fig. 3 show some examples of the mask maps

for birds and dogs. In these figures, we first resize the mask map M using the
bicubic interpolation, such that its size is the same as the input image. We then
overlay the corresponding mask map (highlighted in red) onto original images.
Even though the proposed method does not train on these datasets, the main
objects (birds or dogs) can be roughly detected. But, as can be seen from the
2nd, 3rd and 5th figure in the first row, there are still several small noisy parts
activated on complicated background. Fortunately, because the noisy parts are
usually smaller than the main object, we collect the largest connected component
of M , which is denoted as fM , to get rid of the interference caused by noisy parts.
In the second row, the main objects are kept by fM , while the noisy parts are
discarded, e.g., the plant and the water bottle.
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Figure 3. Visualization of the mask map M and the corresponding largest connected
component fM . The selected regions are highlighted in red. (Best viewed in color.)

region, we could expect this region to be an object rather than the background.
Therefore, in the proposed method, we add up the obtained pool
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activation
tensor through the depth direction. Thus, the h ⇥ w ⇥ d 3-D tensor becomes
an h ⇥ w 2-D tensor, which we call the “activation map”, i.e., A =

Pd
n=1

Sn

(where Sn is the nth feature map in pool
5

). For the activation map A, there are
h ⇥ w summed activation responses, corresponding to h ⇥ w positions. Based
on the aforementioned observation, it is straightforward to say that the higher
activation response a particular position (i, j) is, the more possibility of its cor-
responding region being part of the object. Then, we calculate the mean value
ā of all the positions in A as the threshold to decide which positions localize
objects: the position (i, j) whose activation response is higher than ā indicates
the main object, e.g., birds or dogs, might appear in that position. A mask map
M of the same size as A can be obtained as:

Mi,j =

(

1 if Ai,j > ā

0 otherwise
, (1)

where (i, j) is a particular position in these h⇥ w positions.
The figures in the first row of Fig. 3 show some examples of the mask maps

for birds and dogs. In these figures, we first resize the mask map M using the
bicubic interpolation, such that its size is the same as the input image. We then
overlay the corresponding mask map (highlighted in red) onto original images.
Even though the proposed method does not train on these datasets, the main
objects (birds or dogs) can be roughly detected. But, as can be seen from the
2nd, 3rd and 5th figure in the first row, there are still several small noisy parts
activated on complicated background. Fortunately, because the noisy parts are
usually smaller than the main object, we collect the largest connected component
of M , which is denoted as fM , to get rid of the interference caused by noisy parts.
In the second row, the main objects are kept by fM , while the noisy parts are
discarded, e.g., the plant and the water bottle.
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(a) Input image
(e) The largest connected
component of the mask map

(d) Mask map(c) Activation map(b) Feature maps

Figure 4. Selecting useful deep convolutional descriptors. (Best viewed in color.)

Therefore, we use fM to select useful and meaningful deep convolutional de-
scriptors. The descriptor x

(i,j) should be kept when fMi,j = 1, while fMi,j = 0
means the position (i, j) might have background or noisy parts:

F =
n

x

(i,j)|fMi,j = 1
o

, (2)

where F stands for the selected descriptor set, which will be aggregated into the
final representation for retrieving fine-grained images. The whole convolutional
descriptor selection process is illustrated in Fig. 4.

Qualitative Evaluation In this section, we give the qualitative evaluation of
the proposed descriptor selection process. Because the two fine-grained datasets
(i.e., CUB200-2011 and Stanford Dogs) supply the ground-truth bounding box
for each image, it is desirable to evaluate the proposed method for object local-
ization. However, as seen in Fig. 3, the detected regions are irregular shaped.
So, the minimum rectangle bounding boxes which contain the detected regions
are returned as our object localization predictions. We evaluate the proposed
method to localize the whole-object (birds or dogs) on their test sets. Example
predictions can be seen in Fig. 5. From these figures, the predicted bounding
boxes approximate the ground-truth ones, and even some results are better than
the ground truth. For instance, in the second dog image shown in Fig. 5, the
predicted bounding box can cover both dogs; and in the third one, the predicted
box contains less background, which is beneficial to retrieval performance. How-
ever, since we utilize no supervision, some details of the fine-grained objects, e.g.,
birds’ tails, cannot be contained accurately by the predicted bounding boxes.

Quantitative Evaluation In addition, we also report the results in terms of the
Percentage of Correctly Localized Parts (PCP) metric in Table 1. The reported
metrics are the percentage of whole-object boxes that are correctly localized
with a >50% IOU with the ground-truth bounding boxes. In this table, we also
show the PCP results of two fine-grained parts (i.e., head and torso) reported in
some previous part localization based fine-grained classification algorithms [4,
5,29]. Because our method do not require any supervision, we can just compare
the whole-object localization rates with that of fine-grained parts for a rough

Selecting useful deep convolutional descriptors
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Figure 6. Samples of predicted object localization bounding box on CUB200-2011 and
Stanford Dogs. The ground-truth bounding box is marked as the red dashed rectangle,
while the predicted one is marked in the solid yellow one. (Best viewed in color.)
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Figure 6. Samples of predicted object localization bounding box on CUB200-2011 and
Stanford Dogs. The ground-truth bounding box is marked as the red dashed rectangle,
while the predicted one is marked in the solid yellow one. (Best viewed in color.)
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Figure 5. Samples of predicted object localization bounding box. The ground-truth
bounding box is marked as the red dashed rectangle, while the predicted one is marked
in the solid yellow rectangle. (The figure is best viewed in color.)

Table 1. Comparison of object localization performance on two fine-grained datasets.

Dataset Method
Train phase Test phase

Head Torso Whole-object
BBox Parts BBox Parts

CUB200-2011

Strong DPM [29] X X X 43.49% 75.15% N/A
Part-based R-CNN with BBox [4] X X X 68.19% 79.82% N/A

Deep LAC [5] X X X 74.00% 96.00% N/A
Part-based R-CNN [4] X X 61.42% 70.68% N/A

Ours N/A N/A 76.79%

Stanford Dogs Ours N/A N/A 78.86%

comparison. In fact, the torso bounding box is highly similar to that of the
whole-object in CUB200-2011. By comparing the results of PCP for torso and
our whole-object, we find that, even though our method is unsupervised, the
localization performance is just slightly lower or even comparable to that of
these algorithms using strong supervisions, e.g., ground-truth bounding box and
parts annotations (even in the test phase).

3.2 Aggregating Convolutional Descriptors

After selecting F =
n

x

(i,j)|fMi,j = 1
o

, we compare several encoding or pooling

approaches to aggregate these convolutional features, and then give our proposal.

– VLAD [14] uses k-means to find a codebook of K centroids {c
1

, . . . , cK}
and maps x

(i,j) into a single vector v

(i,j) =
⇥

0 . . . 0 x

(i,j) � ck . . . 0

⇤

2
RK⇥d, where ck is the closest centroid to x

(i,j). The final representation is
P

i,j v(i,j).
– Fisher Vector [15]: FV is similar to VLAD, but uses a soft assignment

(i.e., Gaussian Mixture Model) instead of using k-means. Moreover, FV also
includes second-order statistics.2

2 For parameter choice of VLAD/FV, we follow the suggestions reported in [30]. The
number of clusters in VLAD and the number of Gaussian components in FV are
both set to 2. Larger values lead to lower accuracy.



The proposed method (con't)

Aggregating convolutional descriptors

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV
#545

ECCV
#545

ECCV-16 submission ID 545 9

Table 2. Comparison of di↵erent encoding or pooling approaches for FGIR.

Approach Dimension
CUB200-2011 Stanford Dogs
top1 top5 top1 top5

VLAD 1,024 55.92% 62.51% 69.28% 74.43%
Fisher Vector 2,048 52.04% 59.19% 68.37% 73.74%

avgPool 512 56.42% 63.14% 73.76% 78.47%
maxPool 512 58.35% 64.18% 70.37% 75.59%

avg&maxPool 1,024 59.72% 65.79% 74.86% 79.24%

– Pooling approaches. We also try two traditional pooling approaches, i.e.,
max-pooling and average-pooling, to aggregate the deep descriptors.

After encoding or pooling into a single vector, for VLAD and FV, the square
root normalization and `

2

-normalization are followed; for max- and average-
pooling methods, we just do `

2

-normalization (the square root normalization did
not work well). Finally, the cosine similarity is used for nearest neighbor search.
We use two datasets to demonstrate which type of aggregation method is optimal
for fine-grained image retrieval. The original training and testing splits provided
in the datasets are used. Each image in the testing set is treated as a query, and
the training images are regarded as the gallery. The top-k mAP retrieval perfor-
mance is reported in Table 2. We find the simpler aggregation methods such as
max- and average-pooling achieve better retrieval performance comparing with
the high-dimensional encoding approaches. These observations are also consis-
tent with the findings in [20] for general image retrieval. We propose to concate-
nate the max-pooling and average-pooling representations, “avg&maxPool”, as
our aggregation scheme. Its performance is significantly and consistently higher
than the others. We use the “avg&maxPool” aggregation as “SCDA feature” to
represent the whole fine-grained image.

3.3 Multiple Layer Ensemble

As studied in [31,32], the ensemble of multiple layers boost the final performance.
Thus, we also incorporate another SCDA feature produced from the relu

5 2

layer
which is three layers in front of pool

5

in the VGG-16 model [25].
Following pool

5

, we get the mask mapM
relu5 2 from relu

5 2

. Its activations are
less related to the semantic meaning than those of pool

5

. As shown in Fig. 6 (c),
there are many noisy parts. However, the bird is more accurately detected than
pool

5

. Therefore, we combine fM
pool5

and M
relu5 2 together to get the final mask

map of relu
5 2

. fM
pool5

is firstly upsampled to the size of M
relu5 2 . We keep the

descriptors when their position in both fM
pool5

and M
relu5 2 are 1, which are

the final selected relu
5 2

descriptors. The aggregation process remains the same.
Finally, we concatenate the SCDA features of relu

5 2

and pool
5

into a single
representation, denoted by “SCDA+”:

SCDA+  
⇥

SCDA
pool5

, ↵⇥ SCDA
relu5 2

⇤

, (3)
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Figure 5. Samples of predicted object localization bounding box. The ground-truth
bounding box is marked as the red dashed rectangle, while the predicted one is marked
in the solid yellow rectangle. (The figure is best viewed in color.)

Table 1. Comparison of object localization performance on two fine-grained datasets.

Dataset Method
Train phase Test phase

Head Torso Whole-object
BBox Parts BBox Parts

CUB200-2011

Strong DPM [29] X X X 43.49% 75.15% N/A
Part-based R-CNN with BBox [4] X X X 68.19% 79.82% N/A

Deep LAC [5] X X X 74.00% 96.00% N/A
Part-based R-CNN [4] X X 61.42% 70.68% N/A

Ours N/A N/A 76.79%

Stanford Dogs Ours N/A N/A 78.86%

comparison. In fact, the torso bounding box is highly similar to that of the
whole-object in CUB200-2011. By comparing the results of PCP for torso and
our whole-object, we find that, even though our method is unsupervised, the
localization performance is just slightly lower or even comparable to that of
these algorithms using strong supervisions, e.g., ground-truth bounding box and
parts annotations (even in the test phase).

3.2 Aggregating Convolutional Descriptors

After selecting F =
n

x

(i,j)|fMi,j = 1
o

, we compare several encoding or pooling

approaches to aggregate these convolutional features, and then give our proposal.

– VLAD [14] uses k-means to find a codebook of K centroids {c
1

, . . . , cK}
and maps x

(i,j) into a single vector v

(i,j) =
⇥

0 . . . 0 x

(i,j) � ck . . . 0

⇤

2
RK⇥d, where ck is the closest centroid to x

(i,j). The final representation is
P

i,j v(i,j).
– Fisher Vector [15]: FV is similar to VLAD, but uses a soft assignment

(i.e., Gaussian Mixture Model) instead of using k-means. Moreover, FV also
includes second-order statistics.2

2 For parameter choice of VLAD/FV, we follow the suggestions reported in [30]. The
number of clusters in VLAD and the number of Gaussian components in FV are
both set to 2. Larger values lead to lower accuracy.
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Figure 5. Samples of predicted object localization bounding box. The ground-truth
bounding box is marked as the red dashed rectangle, while the predicted one is marked
in the solid yellow rectangle. (The figure is best viewed in color.)

Table 1. Comparison of object localization performance on two fine-grained datasets.

Dataset Method
Train phase Test phase

Head Torso Whole-object
BBox Parts BBox Parts

CUB200-2011

Strong DPM [29] X X X 43.49% 75.15% N/A
Part-based R-CNN with BBox [4] X X X 68.19% 79.82% N/A

Deep LAC [5] X X X 74.00% 96.00% N/A
Part-based R-CNN [4] X X 61.42% 70.68% N/A

Ours N/A N/A 76.79%

Stanford Dogs Ours N/A N/A 78.86%

comparison. In fact, the torso bounding box is highly similar to that of the
whole-object in CUB200-2011. By comparing the results of PCP for torso and
our whole-object, we find that, even though our method is unsupervised, the
localization performance is just slightly lower or even comparable to that of
these algorithms using strong supervisions, e.g., ground-truth bounding box and
parts annotations (even in the test phase).

3.2 Aggregating Convolutional Descriptors

After selecting F =
n

x

(i,j)|fMi,j = 1
o

, we compare several encoding or pooling

approaches to aggregate these convolutional features, and then give our proposal.

– VLAD [14] uses k-means to find a codebook of K centroids {c
1

, . . . , cK}
and maps x

(i,j) into a single vector v

(i,j) =
⇥

0 . . . 0 x

(i,j) � ck . . . 0

⇤

2
RK⇥d, where ck is the closest centroid to x

(i,j). The final representation is
P

i,j v(i,j).
– Fisher Vector [15]: FV is similar to VLAD, but uses a soft assignment

(i.e., Gaussian Mixture Model) instead of using k-means. Moreover, FV also
includes second-order statistics.2

2 For parameter choice of VLAD/FV, we follow the suggestions reported in [30]. The
number of clusters in VLAD and the number of Gaussian components in FV are
both set to 2. Larger values lead to lower accuracy.
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Table 2. Comparison of di↵erent encoding or pooling approaches for FGIR.

Approach Dimension
CUB200-2011 Stanford Dogs
top1 top5 top1 top5

VLAD 1,024 55.92% 62.51% 69.28% 74.43%
Fisher Vector 2,048 52.04% 59.19% 68.37% 73.74%

avgPool 512 56.42% 63.14% 73.76% 78.47%
maxPool 512 58.35% 64.18% 70.37% 75.59%

avg&maxPool 1,024 59.72% 65.79% 74.86% 79.24%

– Pooling approaches. We also try two traditional pooling approaches, i.e.,
max-pooling and average-pooling, to aggregate the deep descriptors.

After encoding or pooling into a single vector, for VLAD and FV, the square
root normalization and `

2

-normalization are followed; for max- and average-
pooling methods, we just do `

2

-normalization (the square root normalization did
not work well). Finally, the cosine similarity is used for nearest neighbor search.
We use two datasets to demonstrate which type of aggregation method is optimal
for fine-grained image retrieval. The original training and testing splits provided
in the datasets are used. Each image in the testing set is treated as a query, and
the training images are regarded as the gallery. The top-k mAP retrieval perfor-
mance is reported in Table 2. We find the simpler aggregation methods such as
max- and average-pooling achieve better retrieval performance comparing with
the high-dimensional encoding approaches. These observations are also consis-
tent with the findings in [20] for general image retrieval. We propose to concate-
nate the max-pooling and average-pooling representations, “avg&maxPool”, as
our aggregation scheme. Its performance is significantly and consistently higher
than the others. We use the “avg&maxPool” aggregation as “SCDA feature” to
represent the whole fine-grained image.

3.3 Multiple Layer Ensemble

As studied in [31,32], the ensemble of multiple layers boost the final performance.
Thus, we also incorporate another SCDA feature produced from the relu

5 2

layer
which is three layers in front of pool

5

in the VGG-16 model [25].
Following pool

5

, we get the mask mapM
relu5 2 from relu

5 2

. Its activations are
less related to the semantic meaning than those of pool

5

. As shown in Fig. 6 (c),
there are many noisy parts. However, the bird is more accurately detected than
pool

5

. Therefore, we combine fM
pool5

and M
relu5 2 together to get the final mask

map of relu
5 2

. fM
pool5

is firstly upsampled to the size of M
relu5 2 . We keep the

descriptors when their position in both fM
pool5

and M
relu5 2 are 1, which are

the final selected relu
5 2

descriptors. The aggregation process remains the same.
Finally, we concatenate the SCDA features of relu

5 2

and pool
5

into a single
representation, denoted by “SCDA+”:

SCDA+  
⇥

SCDA
pool5

, ↵⇥ SCDA
relu5 2

⇤

, (3)
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Table 2. Comparison of di↵erent encoding or pooling approaches for FGIR.

Approach Dimension
CUB200-2011 Stanford Dogs
top1 top5 top1 top5

VLAD 1,024 55.92% 62.51% 69.28% 74.43%
Fisher Vector 2,048 52.04% 59.19% 68.37% 73.74%

avgPool 512 56.42% 63.14% 73.76% 78.47%
maxPool 512 58.35% 64.18% 70.37% 75.59%

avg&maxPool 1,024 59.72% 65.79% 74.86% 79.24%

– Pooling approaches. We also try two traditional pooling approaches, i.e.,
max-pooling and average-pooling, to aggregate the deep descriptors.

After encoding or pooling into a single vector, for VLAD and FV, the square
root normalization and `

2

-normalization are followed; for max- and average-
pooling methods, we just do `

2

-normalization (the square root normalization did
not work well). Finally, the cosine similarity is used for nearest neighbor search.
We use two datasets to demonstrate which type of aggregation method is optimal
for fine-grained image retrieval. The original training and testing splits provided
in the datasets are used. Each image in the testing set is treated as a query, and
the training images are regarded as the gallery. The top-k mAP retrieval perfor-
mance is reported in Table 2. We find the simpler aggregation methods such as
max- and average-pooling achieve better retrieval performance comparing with
the high-dimensional encoding approaches. These observations are also consis-
tent with the findings in [20] for general image retrieval. We propose to concate-
nate the max-pooling and average-pooling representations, “avg&maxPool”, as
our aggregation scheme. Its performance is significantly and consistently higher
than the others. We use the “avg&maxPool” aggregation as “SCDA feature” to
represent the whole fine-grained image.

3.3 Multiple Layer Ensemble

As studied in [31,32], the ensemble of multiple layers boost the final performance.
Thus, we also incorporate another SCDA feature produced from the relu

5 2

layer
which is three layers in front of pool

5

in the VGG-16 model [25].
Following pool

5

, we get the mask mapM
relu5 2 from relu

5 2

. Its activations are
less related to the semantic meaning than those of pool

5

. As shown in Fig. 6 (c),
there are many noisy parts. However, the bird is more accurately detected than
pool

5

. Therefore, we combine fM
pool5

and M
relu5 2 together to get the final mask

map of relu
5 2

. fM
pool5

is firstly upsampled to the size of M
relu5 2 . We keep the

descriptors when their position in both fM
pool5

and M
relu5 2 are 1, which are

the final selected relu
5 2

descriptors. The aggregation process remains the same.
Finally, we concatenate the SCDA features of relu

5 2

and pool
5

into a single
representation, denoted by “SCDA+”:

SCDA+  
⇥

SCDA
pool5

, ↵⇥ SCDA
relu5 2

⇤

, (3)
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(a) M of Pool5 (d)       of Relu5_2(c) M of Relu5_2(b)       of Pool5

Figure 6. The mask map and its corresponding largest connected component of dif-
ferent CNN layers. (The figure is best viewed in color.)

where ↵ is the coe�cient for SCDA
relu5 2 . It is set to 0.5 for FGIR. The `

2

normalization is followed. In addition, another SCDA+ of the horizontal flip of
the original image is incorporated, which is denoted as “SCDA flip+” (4,096-d).

4 Experiments and Results

In this section, we report the fine-grained image retrieval results. In addition,
as another evidence to prove the e↵ectiveness of SCDA, we also report the
fine-grained classification accuracy by fine-tuning the pre-trained model with
image-level labels. In the experiments, we evaluate the proposed method on four
benchmark fine-grained datasets, CUB200-2011 [10] (200 classes, 11,788 im-
ages), Stanford Dogs [11] (120 classes, 20,580 images), Oxford Flowers 102 [12]
(102 classes, 8,189 images) and Oxford-IIIT Pets [13] (37 classes, 7,349 images).
For the pre-trained deep model, the publicly available VGG-16 model [25] is
employed to extract deep convolutional descriptors in MatConvNet [33].

4.1 Fine-Grained Image Retrieval Performance

We compare the proposed method with several baseline approaches and two
state-of-the-art general image retrieval approaches, SPoC [20] and CroW [21].
The top-1 and top-5 mAP results are reported in Table 3.

For the fc
8

baseline, because it requires the input images at a fixed size, the
original images are resized to 224⇥224 and then fed into VGG-16. In addition, we
also feed the ground truth bounding boxes to replace the whole images. As shown
in Table 3, because the ground truth bounding boxes of these fine-grained images
just contain the main objects, the fc

8

feature of the ground truth bounding
box achieves better performance than that of the whole images. Moreover, the
retrieval results of the fc

8

feature using the bounding boxes predicted by our
method are also shown in Table 3, which are slightly lower than the ground-
truth ones. This observation validates the e↵ectiveness of our method’s object
localization once again.

For the pool
5

baseline, the pool
5

descriptors are extracted directly with-
out any selection process. We pool them by both average- and max-pooling, and
concatenate them into a 1,024-d representation. As shown in Table 3, the perfor-
mance of pool

5

is better than “fc
8

im”, but much worse than the proposed SCDA
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(a) M of Pool5 (d)       of Relu5_2(c) M of Relu5_2(b)       of Pool5

Figure 6. The mask map and its corresponding largest connected component of dif-
ferent CNN layers. (The figure is best viewed in color.)

where ↵ is the coe�cient for SCDA
relu5 2 . It is set to 0.5 for FGIR. The `

2

normalization is followed. In addition, another SCDA+ of the horizontal flip of
the original image is incorporated, which is denoted as “SCDA flip+” (4,096-d).

4 Experiments and Results

In this section, we report the fine-grained image retrieval results. In addition,
as another evidence to prove the e↵ectiveness of SCDA, we also report the
fine-grained classification accuracy by fine-tuning the pre-trained model with
image-level labels. In the experiments, we evaluate the proposed method on four
benchmark fine-grained datasets, CUB200-2011 [10] (200 classes, 11,788 im-
ages), Stanford Dogs [11] (120 classes, 20,580 images), Oxford Flowers 102 [12]
(102 classes, 8,189 images) and Oxford-IIIT Pets [13] (37 classes, 7,349 images).
For the pre-trained deep model, the publicly available VGG-16 model [25] is
employed to extract deep convolutional descriptors in MatConvNet [33].

4.1 Fine-Grained Image Retrieval Performance

We compare the proposed method with several baseline approaches and two
state-of-the-art general image retrieval approaches, SPoC [20] and CroW [21].
The top-1 and top-5 mAP results are reported in Table 3.

For the fc
8

baseline, because it requires the input images at a fixed size, the
original images are resized to 224⇥224 and then fed into VGG-16. In addition, we
also feed the ground truth bounding boxes to replace the whole images. As shown
in Table 3, because the ground truth bounding boxes of these fine-grained images
just contain the main objects, the fc

8

feature of the ground truth bounding
box achieves better performance than that of the whole images. Moreover, the
retrieval results of the fc

8

feature using the bounding boxes predicted by our
method are also shown in Table 3, which are slightly lower than the ground-
truth ones. This observation validates the e↵ectiveness of our method’s object
localization once again.

For the pool
5

baseline, the pool
5

descriptors are extracted directly with-
out any selection process. We pool them by both average- and max-pooling, and
concatenate them into a 1,024-d representation. As shown in Table 3, the perfor-
mance of pool

5

is better than “fc
8

im”, but much worse than the proposed SCDA
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Table 2. Comparison of di↵erent encoding or pooling approaches for FGIR.

Approach Dimension
CUB200-2011 Stanford Dogs
top1 top5 top1 top5

VLAD 1,024 55.92% 62.51% 69.28% 74.43%
Fisher Vector 2,048 52.04% 59.19% 68.37% 73.74%

avgPool 512 56.42% 63.14% 73.76% 78.47%
maxPool 512 58.35% 64.18% 70.37% 75.59%

avg&maxPool 1,024 59.72% 65.79% 74.86% 79.24%

– Pooling approaches. We also try two traditional pooling approaches, i.e.,
max-pooling and average-pooling, to aggregate the deep descriptors.

After encoding or pooling into a single vector, for VLAD and FV, the square
root normalization and `

2

-normalization are followed; for max- and average-
pooling methods, we just do `

2

-normalization (the square root normalization did
not work well). Finally, the cosine similarity is used for nearest neighbor search.
We use two datasets to demonstrate which type of aggregation method is optimal
for fine-grained image retrieval. The original training and testing splits provided
in the datasets are used. Each image in the testing set is treated as a query, and
the training images are regarded as the gallery. The top-k mAP retrieval perfor-
mance is reported in Table 2. We find the simpler aggregation methods such as
max- and average-pooling achieve better retrieval performance comparing with
the high-dimensional encoding approaches. These observations are also consis-
tent with the findings in [20] for general image retrieval. We propose to concate-
nate the max-pooling and average-pooling representations, “avg&maxPool”, as
our aggregation scheme. Its performance is significantly and consistently higher
than the others. We use the “avg&maxPool” aggregation as “SCDA feature” to
represent the whole fine-grained image.

3.3 Multiple Layer Ensemble

As studied in [31,32], the ensemble of multiple layers boost the final performance.
Thus, we also incorporate another SCDA feature produced from the relu

5 2

layer
which is three layers in front of pool

5

in the VGG-16 model [25].
Following pool

5

, we get the mask mapM
relu5 2 from relu

5 2

. Its activations are
less related to the semantic meaning than those of pool

5

. As shown in Fig. 6 (c),
there are many noisy parts. However, the bird is more accurately detected than
pool

5

. Therefore, we combine fM
pool5

and M
relu5 2 together to get the final mask

map of relu
5 2

. fM
pool5

is firstly upsampled to the size of M
relu5 2 . We keep the

descriptors when their position in both fM
pool5

and M
relu5 2 are 1, which are

the final selected relu
5 2

descriptors. The aggregation process remains the same.
Finally, we concatenate the SCDA features of relu

5 2

and pool
5

into a single
representation, denoted by “SCDA+”:

SCDA+  
⇥

SCDA
pool5

, ↵⇥ SCDA
relu5 2

⇤

, (3)
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(a) M of Pool5 (d)       of Relu5_2(c) M of Relu5_2(b)       of Pool5

Figure 6. The mask map and its corresponding largest connected component of dif-
ferent CNN layers. (The figure is best viewed in color.)

where ↵ is the coe�cient for SCDA
relu5 2 . It is set to 0.5 for FGIR. The `

2

normalization is followed. In addition, another SCDA+ of the horizontal flip of
the original image is incorporated, which is denoted as “SCDA flip+” (4,096-d).

4 Experiments and Results

In this section, we report the fine-grained image retrieval results. In addition,
as another evidence to prove the e↵ectiveness of SCDA, we also report the
fine-grained classification accuracy by fine-tuning the pre-trained model with
image-level labels. In the experiments, we evaluate the proposed method on four
benchmark fine-grained datasets, CUB200-2011 [10] (200 classes, 11,788 im-
ages), Stanford Dogs [11] (120 classes, 20,580 images), Oxford Flowers 102 [12]
(102 classes, 8,189 images) and Oxford-IIIT Pets [13] (37 classes, 7,349 images).
For the pre-trained deep model, the publicly available VGG-16 model [25] is
employed to extract deep convolutional descriptors in MatConvNet [33].

4.1 Fine-Grained Image Retrieval Performance

We compare the proposed method with several baseline approaches and two
state-of-the-art general image retrieval approaches, SPoC [20] and CroW [21].
The top-1 and top-5 mAP results are reported in Table 3.

For the fc
8

baseline, because it requires the input images at a fixed size, the
original images are resized to 224⇥224 and then fed into VGG-16. In addition, we
also feed the ground truth bounding boxes to replace the whole images. As shown
in Table 3, because the ground truth bounding boxes of these fine-grained images
just contain the main objects, the fc

8

feature of the ground truth bounding
box achieves better performance than that of the whole images. Moreover, the
retrieval results of the fc

8

feature using the bounding boxes predicted by our
method are also shown in Table 3, which are slightly lower than the ground-
truth ones. This observation validates the e↵ectiveness of our method’s object
localization once again.

For the pool
5

baseline, the pool
5

descriptors are extracted directly with-
out any selection process. We pool them by both average- and max-pooling, and
concatenate them into a 1,024-d representation. As shown in Table 3, the perfor-
mance of pool

5

is better than “fc
8

im”, but much worse than the proposed SCDA
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Table 2. Comparison of di↵erent encoding or pooling approaches for FGIR.

Approach Dimension
CUB200-2011 Stanford Dogs
top1 top5 top1 top5

VLAD 1,024 55.92% 62.51% 69.28% 74.43%
Fisher Vector 2,048 52.04% 59.19% 68.37% 73.74%

avgPool 512 56.42% 63.14% 73.76% 78.47%
maxPool 512 58.35% 64.18% 70.37% 75.59%

avg&maxPool 1,024 59.72% 65.79% 74.86% 79.24%

– Pooling approaches. We also try two traditional pooling approaches, i.e.,
max-pooling and average-pooling, to aggregate the deep descriptors.

After encoding or pooling into a single vector, for VLAD and FV, the square
root normalization and `

2

-normalization are followed; for max- and average-
pooling methods, we just do `

2

-normalization (the square root normalization did
not work well). Finally, the cosine similarity is used for nearest neighbor search.
We use two datasets to demonstrate which type of aggregation method is optimal
for fine-grained image retrieval. The original training and testing splits provided
in the datasets are used. Each image in the testing set is treated as a query, and
the training images are regarded as the gallery. The top-k mAP retrieval perfor-
mance is reported in Table 2. We find the simpler aggregation methods such as
max- and average-pooling achieve better retrieval performance comparing with
the high-dimensional encoding approaches. These observations are also consis-
tent with the findings in [20] for general image retrieval. We propose to concate-
nate the max-pooling and average-pooling representations, “avg&maxPool”, as
our aggregation scheme. Its performance is significantly and consistently higher
than the others. We use the “avg&maxPool” aggregation as “SCDA feature” to
represent the whole fine-grained image.

3.3 Multiple Layer Ensemble

As studied in [31,32], the ensemble of multiple layers boost the final performance.
Thus, we also incorporate another SCDA feature produced from the relu

5 2

layer
which is three layers in front of pool

5

in the VGG-16 model [25].
Following pool

5

, we get the mask mapM
relu5 2 from relu

5 2

. Its activations are
less related to the semantic meaning than those of pool

5

. As shown in Fig. 6 (c),
there are many noisy parts. However, the bird is more accurately detected than
pool

5

. Therefore, we combine fM
pool5

and M
relu5 2 together to get the final mask

map of relu
5 2

. fM
pool5

is firstly upsampled to the size of M
relu5 2 . We keep the

descriptors when their position in both fM
pool5

and M
relu5 2 are 1, which are

the final selected relu
5 2

descriptors. The aggregation process remains the same.
Finally, we concatenate the SCDA features of relu

5 2

and pool
5

into a single
representation, denoted by “SCDA+”:

SCDA+  
⇥

SCDA
pool5

, ↵⇥ SCDA
relu5 2

⇤

, (3)
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(a) M of Pool5 (d)       of Relu5_2(c) M of Relu5_2(b)       of Pool5

Figure 6. The mask map and its corresponding largest connected component of dif-
ferent CNN layers. (The figure is best viewed in color.)

where ↵ is the coe�cient for SCDA
relu5 2 . It is set to 0.5 for FGIR. The `

2

normalization is followed. In addition, another SCDA+ of the horizontal flip of
the original image is incorporated, which is denoted as “SCDA flip+” (4,096-d).

4 Experiments and Results

In this section, we report the fine-grained image retrieval results. In addition,
as another evidence to prove the e↵ectiveness of SCDA, we also report the
fine-grained classification accuracy by fine-tuning the pre-trained model with
image-level labels. In the experiments, we evaluate the proposed method on four
benchmark fine-grained datasets, CUB200-2011 [10] (200 classes, 11,788 im-
ages), Stanford Dogs [11] (120 classes, 20,580 images), Oxford Flowers 102 [12]
(102 classes, 8,189 images) and Oxford-IIIT Pets [13] (37 classes, 7,349 images).
For the pre-trained deep model, the publicly available VGG-16 model [25] is
employed to extract deep convolutional descriptors in MatConvNet [33].

4.1 Fine-Grained Image Retrieval Performance

We compare the proposed method with several baseline approaches and two
state-of-the-art general image retrieval approaches, SPoC [20] and CroW [21].
The top-1 and top-5 mAP results are reported in Table 3.

For the fc
8

baseline, because it requires the input images at a fixed size, the
original images are resized to 224⇥224 and then fed into VGG-16. In addition, we
also feed the ground truth bounding boxes to replace the whole images. As shown
in Table 3, because the ground truth bounding boxes of these fine-grained images
just contain the main objects, the fc

8

feature of the ground truth bounding
box achieves better performance than that of the whole images. Moreover, the
retrieval results of the fc

8

feature using the bounding boxes predicted by our
method are also shown in Table 3, which are slightly lower than the ground-
truth ones. This observation validates the e↵ectiveness of our method’s object
localization once again.

For the pool
5

baseline, the pool
5

descriptors are extracted directly with-
out any selection process. We pool them by both average- and max-pooling, and
concatenate them into a 1,024-d representation. As shown in Table 3, the perfor-
mance of pool

5

is better than “fc
8

im”, but much worse than the proposed SCDA



The proposed method (con't)

Key advantages and main contributions:

We propose a simple yet effective approach to localize the main 
object. This localization is unsupervised, without utilizing bounding 
boxes, image labels, object proposals, or additional learning. 
SCDA selects only useful deep descriptors and removes background 
or noise, which benefits the retrieval task. 

As shown in experiments, the compressed SCDA feature has 
stronger correspondence to visual attributes (even subtle ones) 
than the deep activations, which might explain the success of SCDA 
for fine-grained tasks. 



Experiments

Datasets

CUB200-2011: 200 birds classes, 11,788 images;

Stanford Dogs: 120 dogs classes, 20,580 image;

Oxford Flowers: 102 flowers classes, 8,189 images;

Oxford-IIIT Pets: 37 dogs or cats classes, 7,349 images.
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Table 3. Comparison of fine-grained image retrieval performance.

Method Dimension
CUB200-2011 Stanford Dogs Oxford Flowers Oxford Pets
top1 top5 top1 top5 top1 top5 top1 top5

fc8 im 4,096 39.90% 48.10% 66.51% 72.69% 55.37% 60.37% 82.26% 86.02%
fc8 gtBBox 4,096 47.55% 55.34% 70.41% 76.61% – – – –

fc8 predBBox 4,096 45.24% 53.05% 68.78% 74.09% 57.16% 62.24% 85.55% 88.47%
Pool5 1,024 57.54% 63.66% 69.98% 75.55% 70.73% 74.05% 85.09% 87.74%

selectFV 2,048 52.04% 59.19% 68.37% 73.74% 70.47% 73.60% 85.04% 87.09%
selectVLAD 1,024 55.92% 62.51% 69.28% 74.43% 73.62% 76.86% 85.50% 87.94%

SPoC (w/o cen.) 256 34.79% 42.54% 48.80% 55.95% 71.36% 74.55% 60.86% 67.78%
SPoC (with cen.) 256 39.61% 47.30% 48.39% 55.69% 65.86% 70.05% 64.05% 71.22%

CroW 256 53.45% 59.69% 62.18% 68.33% 73.67% 76.16% 76.34% 80.10%

SCDA 1,024 59.72% 65.79% 74.86% 79.24% 75.13% 77.70% 87.63% 89.26%
SCDA+ 2,048 59.68% 65.83% 74.15% 78.54% 75.98% 78.49% 87.99% 89.49%

SCDA flip+ 4,096 60.65% 66.75% 74.95% 79.27% 77.56% 79.77% 88.19% 89.65%

Table 4. Comparison of di↵erent compression methods on “SCDA flip+”.

Method Dimension
CUB200-2011 Stanford Dogs Oxford Flowers Oxford Pets
top1 top5 top1 top5 top1 top5 top1 top5

PCA
256 60.48% 66.55% 74.63% 79.09% 76.38% 79.32% 87.82% 89.75%
512 60.37% 66.78% 74.76% 79.27% 77.15% 79.50% 87.46% 89.71%

SVD
256 60.34% 66.57% 74.79% 79.27% 76.79% 79.32% 87.84% 89.79%
512 60.41% 66.82% 74.72% 79.26% 77.10% 79.48% 87.41% 89.72%

SVD+whitening
256 62.29% 68.16% 71.57% 76.68% 80.74% 82.42% 85.47% 87.99%
512 62.13% 68.13% 71.07% 76.06% 81.44% 82.82% 85.23% 87.62%

feature. In addition, VLAD and FV is employed to encode the selected deep de-
scriptors, and we denote the two methods as “selectVLAD” and “selectFV” in
Table 3. The features of selectVLAD and selectFV have longer dimensionality,
but lower mAP in the retrieval task.

State-of-the-art general image retrieval approaches, e.g., SPoC and CroW,
can not get satisfactory results for fine-grained images. Hence, general deep
learning image retrieval methods could not be directly applied to FGIR.

We also report the results of SCDA+ and SCDA flip+ on these four fine-
grained datasets in Table 3. In general, SCDA flip+ is the best among compared
methods.

Post-Processing In the following, we compare several feature compression
methods on the SCDA flip+ feature: 1) Singular Value Decomposition (SVD);
2) Principal Component Analysis (PCA); 3) PCA whitening (whose results were
much worse than other methods and are omitted) and 4) SVD whitening. We
compress the SCDA flip+ feature to 256-d and 512-d, respectively, and report
the compressed results in Table 4. Comparing the results shown in Table 3 and
Table 4, the compressed methods can reduce the dimensionality without hurt-
ing the retrieval performance. SVD (which does not remove the mean vector)
has slightly higher rates than PCA (which removes the mean vector). In par-
ticular, the “256-d SVD+whitening” feature can achieve better retrieval perfor-
mance (2%⇠ 3% higher) than the original SCDA flip+ feature on CUB200-2011
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Table 3. Comparison of fine-grained image retrieval performance.

Method Dimension
CUB200-2011 Stanford Dogs Oxford Flowers Oxford Pets
top1 top5 top1 top5 top1 top5 top1 top5

fc8 im 4,096 39.90% 48.10% 66.51% 72.69% 55.37% 60.37% 82.26% 86.02%
fc8 gtBBox 4,096 47.55% 55.34% 70.41% 76.61% – – – –

fc8 predBBox 4,096 45.24% 53.05% 68.78% 74.09% 57.16% 62.24% 85.55% 88.47%
Pool5 1,024 57.54% 63.66% 69.98% 75.55% 70.73% 74.05% 85.09% 87.74%

selectFV 2,048 52.04% 59.19% 68.37% 73.74% 70.47% 73.60% 85.04% 87.09%
selectVLAD 1,024 55.92% 62.51% 69.28% 74.43% 73.62% 76.86% 85.50% 87.94%

SPoC (w/o cen.) 256 34.79% 42.54% 48.80% 55.95% 71.36% 74.55% 60.86% 67.78%
SPoC (with cen.) 256 39.61% 47.30% 48.39% 55.69% 65.86% 70.05% 64.05% 71.22%

CroW 256 53.45% 59.69% 62.18% 68.33% 73.67% 76.16% 76.34% 80.10%

SCDA 1,024 59.72% 65.79% 74.86% 79.24% 75.13% 77.70% 87.63% 89.26%
SCDA+ 2,048 59.68% 65.83% 74.15% 78.54% 75.98% 78.49% 87.99% 89.49%

SCDA flip+ 4,096 60.65% 66.75% 74.95% 79.27% 77.56% 79.77% 88.19% 89.65%

Table 4. Comparison of di↵erent compression methods on “SCDA flip+”.

Method Dimension
CUB200-2011 Stanford Dogs Oxford Flowers Oxford Pets
top1 top5 top1 top5 top1 top5 top1 top5

PCA
256 60.48% 66.55% 74.63% 79.09% 76.38% 79.32% 87.82% 89.75%
512 60.37% 66.78% 74.76% 79.27% 77.15% 79.50% 87.46% 89.71%

SVD
256 60.34% 66.57% 74.79% 79.27% 76.79% 79.32% 87.84% 89.79%
512 60.41% 66.82% 74.72% 79.26% 77.10% 79.48% 87.41% 89.72%

SVD+whitening
256 62.29% 68.16% 71.57% 76.68% 80.74% 82.42% 85.47% 87.99%
512 62.13% 68.13% 71.07% 76.06% 81.44% 82.82% 85.23% 87.62%

feature. In addition, VLAD and FV is employed to encode the selected deep de-
scriptors, and we denote the two methods as “selectVLAD” and “selectFV” in
Table 3. The features of selectVLAD and selectFV have longer dimensionality,
but lower mAP in the retrieval task.

State-of-the-art general image retrieval approaches, e.g., SPoC and CroW,
can not get satisfactory results for fine-grained images. Hence, general deep
learning image retrieval methods could not be directly applied to FGIR.

We also report the results of SCDA+ and SCDA flip+ on these four fine-
grained datasets in Table 3. In general, SCDA flip+ is the best among compared
methods.

Post-Processing In the following, we compare several feature compression
methods on the SCDA flip+ feature: 1) Singular Value Decomposition (SVD);
2) Principal Component Analysis (PCA); 3) PCA whitening (whose results were
much worse than other methods and are omitted) and 4) SVD whitening. We
compress the SCDA flip+ feature to 256-d and 512-d, respectively, and report
the compressed results in Table 4. Comparing the results shown in Table 3 and
Table 4, the compressed methods can reduce the dimensionality without hurt-
ing the retrieval performance. SVD (which does not remove the mean vector)
has slightly higher rates than PCA (which removes the mean vector). In par-
ticular, the “256-d SVD+whitening” feature can achieve better retrieval perfor-
mance (2%⇠ 3% higher) than the original SCDA flip+ feature on CUB200-2011
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Table 3. Comparison of fine-grained image retrieval performance.

Method Dimension
CUB200-2011 Stanford Dogs Oxford Flowers Oxford Pets
top1 top5 top1 top5 top1 top5 top1 top5

fc8 im 4,096 39.90% 48.10% 66.51% 72.69% 55.37% 60.37% 82.26% 86.02%
fc8 gtBBox 4,096 47.55% 55.34% 70.41% 76.61% – – – –

fc8 predBBox 4,096 45.24% 53.05% 68.78% 74.09% 57.16% 62.24% 85.55% 88.47%
Pool5 1,024 57.54% 63.66% 69.98% 75.55% 70.73% 74.05% 85.09% 87.74%

selectFV 2,048 52.04% 59.19% 68.37% 73.74% 70.47% 73.60% 85.04% 87.09%
selectVLAD 1,024 55.92% 62.51% 69.28% 74.43% 73.62% 76.86% 85.50% 87.94%

SPoC (w/o cen.) 256 34.79% 42.54% 48.80% 55.95% 71.36% 74.55% 60.86% 67.78%
SPoC (with cen.) 256 39.61% 47.30% 48.39% 55.69% 65.86% 70.05% 64.05% 71.22%

CroW 256 53.45% 59.69% 62.18% 68.33% 73.67% 76.16% 76.34% 80.10%

SCDA 1,024 59.72% 65.79% 74.86% 79.24% 75.13% 77.70% 87.63% 89.26%
SCDA+ 2,048 59.68% 65.83% 74.15% 78.54% 75.98% 78.49% 87.99% 89.49%

SCDA flip+ 4,096 60.65% 66.75% 74.95% 79.27% 77.56% 79.77% 88.19% 89.65%

Table 4. Comparison of di↵erent compression methods on “SCDA flip+”.

Method Dimension
CUB200-2011 Stanford Dogs Oxford Flowers Oxford Pets
top1 top5 top1 top5 top1 top5 top1 top5

PCA
256 60.48% 66.55% 74.63% 79.09% 76.38% 79.32% 87.82% 89.75%
512 60.37% 66.78% 74.76% 79.27% 77.15% 79.50% 87.46% 89.71%

SVD
256 60.34% 66.57% 74.79% 79.27% 76.79% 79.32% 87.84% 89.79%
512 60.41% 66.82% 74.72% 79.26% 77.10% 79.48% 87.41% 89.72%

SVD+whitening
256 62.29% 68.16% 71.57% 76.68% 80.74% 82.42% 85.47% 87.99%
512 62.13% 68.13% 71.07% 76.06% 81.44% 82.82% 85.23% 87.62%

feature. In addition, VLAD and FV is employed to encode the selected deep de-
scriptors, and we denote the two methods as “selectVLAD” and “selectFV” in
Table 3. The features of selectVLAD and selectFV have longer dimensionality,
but lower mAP in the retrieval task.

State-of-the-art general image retrieval approaches, e.g., SPoC and CroW,
can not get satisfactory results for fine-grained images. Hence, general deep
learning image retrieval methods could not be directly applied to FGIR.

We also report the results of SCDA+ and SCDA flip+ on these four fine-
grained datasets in Table 3. In general, SCDA flip+ is the best among compared
methods.

Post-Processing In the following, we compare several feature compression
methods on the SCDA flip+ feature: 1) Singular Value Decomposition (SVD);
2) Principal Component Analysis (PCA); 3) PCA whitening (whose results were
much worse than other methods and are omitted) and 4) SVD whitening. We
compress the SCDA flip+ feature to 256-d and 512-d, respectively, and report
the compressed results in Table 4. Comparing the results shown in Table 3 and
Table 4, the compressed methods can reduce the dimensionality without hurt-
ing the retrieval performance. SVD (which does not remove the mean vector)
has slightly higher rates than PCA (which removes the mean vector). In par-
ticular, the “256-d SVD+whitening” feature can achieve better retrieval perfor-
mance (2%⇠ 3% higher) than the original SCDA flip+ feature on CUB200-2011

Experiments (con’t)
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Figure 7. Some retrieval results of four fine-grained datasets. On the left, there are
two successful cases for each datasets; while on the right, there are failure cases. The
first image in each row is the query image. Wrong retrieval results are marked by red
boxes. (Best viewed in color.)

and Oxford Flowers. Moreover, “256-d SVD+whitening” generally achieves bet-
ter performance than other compressed ones, meanwhile with less dimensions.
Therefore, we take it as our optimal choice for FGIR. In the following, we present
some retrieval examples based on “256-d SVD+whitening”.

In Fig. 7, we show two successful retrieval results and two failure cases for
each fine-grained dataset, respectively. As shown in the successful cases, our
method can work well when the same kind of birds, animals or flowers appear
in di↵erent kinds of background. In addition, for these failure cases, there exist
only tiny di↵erences between the query image and the returned ones, which can
not be accurately detected in this pure unsupervised setting. We can also find
some interesting observations, e.g., the last failure case of the flowers and pets.
For the flowers, there are two correct predictions in the top-5 returned images.
Even though the flowers in the correct predictions have di↵erent colors with the
query, our method can still find them. For the pets’ failure cases, the dogs in the
returned images have the same pose as the query image.

4.2 Quality and Insight of the SCDA Feature

In this section, we discuss the quality of the proposed SCDA feature. After
SVD and whitening, the former distributed dimensions of SCDA have more
discriminative ability, i.e., directly correspond to semantic visual properties that

Experiments (con’t)
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Figure 8. Quality demonstrations of the SCDA feature. From the top to bottom of
each column, there are six returned original images in the order of one sorted dimension
of “256-d SVD+whitening”. (Best viewed in color and zoomed in.)

are useful for retrieval. We use three datasets (CUB200-2011, Stanford Dogs
and Oxford Flowers) as examples to illustrate the quality. We first select one
dimension of “256-d SVD+whitening”, and then sort the value of that dimension
in the descending order. Then, we visualize images in the same order, which is
shown in Fig. 8.

Images of each column have some similar “attributes”, e.g., living in water
and opening wings for birds; brown and white heads and similar looking faces for
dogs; similar shaped inflorescence and petals with tiny spots for flowers. Obvi-
ously, the SCDA feature has the ability to describe the main objects’ attributes
(even subtle ones), which might explain its success in fine-grained image retrieval.
Details and more examples can be found in the supplementary material.

4.3 Classification Results

In the end, we compare with several state-of-the-art fine-grained classification
algorithms to validate the e↵ectiveness of SCDA from the classification perspec-
tive. In the classification experiments, we fine-tune the pre-trained VGG-16 with
only the image-level labels, and add the horizontal flips of the original images as
data augmentation when fine-tuning. After obtaining the fine-tuned model, we
extract the SCDA flip+ as the whole image representations and feed them into
a linear SVM to train a classifier. Note that, the coe�cient ↵ in classification
experiments is set to 1 to let the classifier to learn and then select important
dimensions automatically. The classification accuracy comparison is listed in Ta-
ble 5.

The classification accuracy of our method is comparable or even better than
the algorithms trained with strong supervised annotations, e.g., [4,5]. For these
algorithms using only image-level labels, our classification accuracy is compara-

Quality demonstration of the SCDA feature
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Table 5. Comparison of classification accuracy on four fine-grained datasets. The
“details” column is a short description of the implementation details. (“f.t.” stands for
“fine-tune”, and “h.flip” is short for “horizontal flip”.)

Method
Train phase Test phase

Details Dim. Birds Dogs Flowers Pets
BBox Parts BBox Parts

PB R-CNN with BBox [4] X X X Alex-Net; f.t. on whole images and parts; with crops 12,288 76.4% – – –

Deep LAC [5] X X X Alex-Net; f.t. on whole images and parts; with crops 12,288 80.3% – – –

PB R-CNN [4] X X Alex-Net; f.t. on whole images and parts; with crops 12,288 73.9% – – –

Two-Level [6] VGG-16; f.t. with part proposals 16,384 77.9% – – –

Weakly supervised FG [9] VGG-16; f.t. with h.flip 262,144 79.3% 80.4% – –

Constellations [7] VGG-19; f.t. with h.flip; with part proposals 208,896 81.0% 68.6%1 95.3% 91.6%

Bilinear [8] VGG-19 and VGG-M; training with h.flip 262,144 84.0% – – –

Spatial Transformer Net [34] Inception architecture; training with h.flip and crops 4,096 84.1% – – –

Ours VGG-16; f.t. with h.flip; w/o crops 4,096 80.5% 78.7% 92.1% 91.0%

1
[7] reported the result of the Birds dataset using VGG-19, while the result of Dogs is based on

the pre-trained Alex-Net model.

ble with the algorithms using similar fine-tuned strategies ( [6,7,9]), but still has
gap to those using more powerful deep architectures and more complicated data
augmentations [8, 34]. The performance of ours when employing powerful deep
networks, e.g., Bilinear Net [8], Spatial Transformer Networks [34] and Resid-
ual Net [35], should also increase. Because our method has less dimensions and
is simple to implement, SCDA is more scalable for large-scale datasets with-
out strong annotations and is easier to generalize. In addition, the CroW [21]
paper presented the classification accuracy on CUB200-2011 without any fine-
tuning (56.5% by VGG-16). We also experiment on the 512-d SCDA feature
(only contains the max-pooling part this time for fair comparison) without any
fine-tuning. The classification accuracy on that dataset is 73.7%, which outper-
forms their performance by a large margin.

5 Conclusions

In this paper, we proposed to use solely a CNN model pre-trained on non-fine-
grained tasks to the novel and di�cult fine-grained image retrieval task. We
proposed the Selective Convolutional Descriptor Aggregation (SCDA) method,
which is unsupervised and does not require additional learning. SCDA first local-
ized the main object in fine-grained image unsupervisedly with high accuracy.
The selected (localized) deep descriptors were then aggregated using the best
practices we found to produce a short feature vector for a fine-grained image.
These features exhibited well-defined semantic visual attributes, which may ex-
plain why SCDA has high retrieval accuracy for fine-grained images.

In the future, we consider including the selected deep descriptors’ weights to
find object parts. Another interesting direction is to explore the possibility of pre-
trained models for more complicated vision tasks such as object segmentation
unsupervised.



Conclusions

Conclusions and future work

solely using a CNN model pre-trained on non-fine-grained tasks

the proposed SCDA: unsupervised and without additional learning

satisfactory retrieval results and corresponding to semantic visual 
attributes



Conclusions

Conclusions and future work

solely using a CNN model pre-trained on non-fine-grained tasks

the proposed SCDA: unsupervised and without additional learning

satisfactory retrieval results and corresponding to semantic visual 
attributes

Future work

We consider including the selected descriptors’ weights to find 
parts.

We also want to explore the possibility of pre-trained models for 
more complicated vision tasks, e.g., object segmentation 
unsupervised.
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Thank you!


