

Selective Convolutional Descriptor Aggregation for Fine-Grained Image Retrieval

Xiu-Shen Wei, Jian-Hao Luo and Jianxin Wu*

LAMDA Group National Key Laboratory for Novel Software Technology Nanjing University, China

- **Market** Related works
- **M** The proposed SCDA method
- **M** Experiments
- Conclusions and future work

Deep convolutional neural networks

Utilities of pre-trained deep models

Utilities of pre-trained deep models

[Cimpoi et al., CVPR'15] [Ghodrati et al., ICCV'15]

Utilities of pre-trained deep models

[Cimpoi et al., CVPR'15] [Ghodrati et al., ICCV'15]

Content-Based Image Retrieval (CBIR)

- Huge amounts of images are everywhere: how to manage this data?
- [□] "A picture is worth thousand words."
- Automatic generation of textual annotations for a wide spectrum of images is not feasible.
- Annotating images manually is a cumbersome and expensive task for large image databases.
- Manual annotations are often subjective, context-sensitive and incomplete.

σ...

Deep learning for image retrieval

Fine-grained image tasks

Related work (con't)

Fine-grained image tasks

Artic_Tern

Siberian Husky

Malamute

Kangaroo

Caspian_Tern

Common_Tern

Fosters_Tern

Related work (con't)

Fine-grained image tasks

Artic_Tern

Siberian Husky

Common_Tern

Fosters_Tern

Fine-grained classification (supervised or weakly supervised)

Part annotations

The proposed method

Notations

(a) Input image

(b) Convolutional activation tensor

 $h\times w\times d$

Feature maps: 2-D feature maps $S = \{S_n\}$ (n = 1, ..., d)

Descriptors: $X = \{ \boldsymbol{x}_{(i,j)} \}$

Selective Convolutional Descriptor Aggregation (SCDA)

Figure 1. Pipeline of the proposed SCDA method. (Best viewed in color.)

The 108-th channel

The 481-th channel

The 468-th channel

The 245-th channel

. .

The 375-th channel

The 6-th channel

. . .

The 163-th channel

. . .

(b) Visualization of the mask map \widetilde{M}

The proposed method (con't)

(a) Input image

Obtaining the activation map by summarizing feature maps

(b) Feature maps

$$M_{i,j} = \begin{cases} 1 & \text{if } A_{i,j} > \bar{a} \\ 0 & \text{otherwise} \end{cases}$$

(b) Visualization of the mask map \widetilde{M}

The proposed method (con't)

Obtaining the activation map by summarizing feature maps

$$M_{i,j} = \begin{cases} 1 & \text{if } A_{i,j} > \bar{a} \\ 0 & \text{otherwise} \end{cases}$$

Visualization of the mask map M

Visualization of the mask map M

(b) Visualization of the mask map \widetilde{M}

Selecting useful deep convolutional descriptors

Figure 4. Selecting useful deep convolutional descriptors. (Best viewed in color.)

Qualitative evaluation

Quantitative evaluation

Table 1. Comparison of object localization performance on two fine-grained datasets.

Dataset	N/IAThOd		Train phase		Test phase		Torso	Whole-object	
Dataset		BBox	Parts	BBox	Parts	Head	10150		
	Strong DPM [29]	\checkmark	\checkmark	\checkmark		43.49%	75.15%	N/A	
	Part-based R-CNN with BBox [4]	\checkmark	\checkmark	\checkmark		68.19%	79.82%	N/A	
CUB200-2011	Deep LAC $[5]$	\checkmark	\checkmark	\checkmark		74.00%	96.00%	N/A	
	Part-based R-CNN [4]	\checkmark	\checkmark			61.42%	70.68%	N/A	
	Ours					N/A	N/A	76.79%	
Stanford Dogs	Ours					N/A	N/A	78.86%	

Aggregating convolutional descriptors

- VLAD [14] uses k-means to find a codebook of K centroids $\{c_1, \ldots, c_K\}$ and maps $\boldsymbol{x}_{(i,j)}$ into a single vector $\boldsymbol{v}_{(i,j)} = \begin{bmatrix} \boldsymbol{0} & \ldots & \boldsymbol{0} & \boldsymbol{x}_{(i,j)} - \boldsymbol{c}_k & \ldots & \boldsymbol{0} \end{bmatrix} \in \mathcal{R}^{K \times d}$, where \boldsymbol{c}_k is the closest centroid to $\boldsymbol{x}_{(i,j)}$. The final representation is $\sum_{i,j} \boldsymbol{v}_{(i,j)}$.
- Fisher Vector [15]: FV is similar to VLAD, but uses a soft assignment (i.e., Gaussian Mixture Model) instead of using k-means. Moreover, FV also includes second-order statistics.²
- Pooling approaches. We also try two traditional pooling approaches, i.e., max-pooling and average-pooling, to aggregate the deep descriptors.

Comparing difference encoding or pooling methods

Approach	Dimension		00-2011	Stanford Dogs			
прриаси	Dimension	top1	top5	top1	top5		
VLAD	1,024	55.92%	62.51%	69.28%	74.43%		
Fisher Vector	2,048	52.04%	59.19%	68.37%	73.74%		
avgPool	512	56.42%	63.14%	73.76%	78.47%		
\max Pool	512	58.35%	64.18%	70.37%	75.59%		
avg&maxPool	1,024	59.72%	65.79%	$\boxed{74.86\%}$	79.24%		

Comparing difference encoding or pooling methods

Approach	Dimension		00-2011	Stanford Dogs			
прриаси	Dimension	top1	top5	top1	top5		
VLAD	1,024	55.92%	62.51%	69.28%	74.43%		
Fisher Vector	2,048	52.04%	59.19%	68.37%	73.74%		
avgPool	512	56.42%	63.14%	73.76%	78.47%		
maxPool	512	58.35%	64.18%	70.37%	75.59%		
avg&maxPool	1,024	59.72%	65.79%	74.86%	79.24%		

SCDA

Multiple layer ensemble

(a) *M* of Pool5

(b) \widetilde{M} of Pool5

(c) *M* of Relu5_2

(d) \widetilde{M} of Relu5_2

Figure 6. The mask map and its corresponding largest connected component of different CNN layers. (The figure is best viewed in color.)

Multiple layer ensemble

(a) M of Pool5

(b) \widetilde{M} of Pool5

(c) *M* of Relu5_2

(d) \widetilde{M} of Relu5_2

Figure 6. The mask map and its corresponding largest connected component of different CNN layers. (The figure is best viewed in color.)

$$\text{SCDA}^+ \leftarrow \left[\text{SCDA}_{\text{pool}_5}, \ \alpha \times \text{SCDA}_{\text{relu}_{5_2}}\right]$$

Multiple layer ensemble

(c) AP of Refuse 25

(d) \widetilde{M} of Relu5_2

Figure 6. The mask map and its corresponding largest connected component of different CNN layers. (The figure is best viewed in color.)

$$\text{SCDA}^+ \leftarrow [\text{SCDA}_{\text{pool}_5}, \ \alpha \times \text{SCDA}_{\text{relu}_{5,2}}]$$

 $\text{SCDA}_{\text{flip}^+}$

Key advantages and main contributions:

- We propose a simple yet effective approach to localize the main object. This localization is unsupervised, without utilizing bounding boxes, image labels, object proposals, or additional learning. SCDA selects only useful deep descriptors and removes background or noise, which benefits the retrieval task.
- ✓ As shown in experiments, the compressed SCDA feature has stronger correspondence to visual attributes (even subtle ones) than the deep activations, which might explain the success of SCDA for fine-grained tasks.

Datasets

- Discrete CUB200-2011: 200 birds classes, 11,788 images;
- □ **Stanford Dogs**: 120 dogs classes, 20,580 image;
- □ Oxford Flowers: 102 flowers classes, 8,189 images;
- □ Oxford-IIIT Pets: 37 dogs or cats classes, 7,349 images.

Retrieval performance:

Method	Dimension	CUB200-2011		Stanford Dogs		Oxford	Flowers	Oxford Pets	
MEUIOU	Dimension	top1	top5	top1	top5	top1	top5	top1	top5
fc ₈ _im	4,096	39.90%	48.10%	66.51%	72.69%	55.37%	60.37%	82.26%	86.02%
fc_{8} -gtBBox	4,096	47.55%	55.34%	70.41%	76.61%	_	_	_	—
fc_{8} -predBBox	4,096	45.24%	53.05%	68.78%	74.09%	57.16%	62.24%	85.55%	88.47%
Pool ₅	1,024	57.54%	63.66%	69.98%	75.55%	70.73%	74.05%	85.09%	87.74%
selectFV	2,048	52.04%	59.19%	68.37%	73.74%	70.47%	73.60%	85.04%	87.09%
selectVLAD	1,024	55.92%	62.51%	69.28%	74.43%	73.62%	76.86%	85.50%	87.94%
SPoC (w/o cen.)	256	34.79%	42.54%	48.80%	55.95%	71.36%	74.55%	60.86%	67.78%
SPoC (with cen.)	256	39.61%	47.30%	48.39%	55.69%	65.86%	70.05%	64.05%	71.22%
CroW	256	53.45%	59.69%	62.18%	68.33%	73.67%	76.16%	76.34%	80.10%
SCDA	1,024	59.72%	65.79%	74.86%	79.24%	75.13%	77.70%	87.63%	89.26%
$SCDA^+$	2,048	59.68%	65.83%	74.15%	78.54%	75.98%	78.49%	87.99%	89.49%
$SCDA_flip^+$	4,096	60.65%	66.75%	$\boxed{74.95\%}$	79.27%	77.56%	79.77%	88.19%	89.65%

Retrieval performance:

Method	Dimension	CUB200-2011		Stanford Dogs		Oxford	Flowers	Oxford Pets		
Method	Dimension	top1	top5	top1	top5	top1	top5	top1	top5	
fc ₈ _im	4,096	39.90%	48.10%	66.51%	72.69%	55.37%	60.37%	82.26%	86.02%	
fc_{8} _gtBBox	4,096	47.55%	55.34%	70.41%	76.61%	_	—	_	_	
fc_{8} -predBBox	4,096	45.24%	53.05%	68.78%	74.09%	57.16%	62.24%	85.55%	88.47%	
Pool ₅	1,024	57.54%	63.66%	69.98%	75.55%	70.73%	74.05%	85.09%	87.74%	
selectFV	2,048	52.04%	59.19%	68.37%	73.74%	70.47%	73.60%	85.04%	87.09%	
selectVLAD	1,024	55.92%	62.51%	69.28%	74.43%	73.62%	76.86%	85.50%	87.94%	
SPoC (w/o cen.)	256	34.79%	42.54%	48.80%	55.95%	71.36%	74.55%	60.86%	67.78%	
SPoC (with cen.)	256	39.61%	47.30%	48.39%	55.69%	65.86%	70.05%	64.05%	71.22%	
CroW	256	53.45%	59.69%	62.18%	68.33%	73.67%	76.16%	76.34%	80.10%	
SCDA	1,024	59.72%	65.79%	74.86%	79.24%	75.13%	77.70%	87.63%	89.26%	
$SCDA^+$	2,048	59.68%	65.83%	74.15%	78.54%	75.98%	78.49%	87.99%	89.49%	
$SCDA_{flip}^+$	4,096	60.65%	66.75%	74.95%	79.27%	77.56%	79.77%	88.19%	89.65%	

Post-processing

$SCDA_{flip}^{+} | 4,096 | |$ **60.65\% | 66.75\% | 74.95\% | 79.27\% | | 77.56\% | 79.77\% | | 88.19\% | 89.65\%**

Table 4. Comparison of d	lifferent compression	methods on	"SCDA_flip".
--------------------------	-----------------------	------------	--------------

Method PCA	Dimension	CUB200-2011		Stanford Dogs		Oxford	<i>Flowers</i>	Oxford Pets		
		top1	top5	top1	top5	top1	top5	top1	top5	
	256	60.48%	66.55%	74.63%	79.09%	76.38%	79.32%	87.82%	89.75%	
I UA	512	60.37%	66.78%	74.76%	79.27%	77.15%	79.50%	87.46%	89.71%	
SVD	256	60.34%	66.57%	$\boxed{74.79\%}$	79.27%	76.79%	79.32%	87.84%	89.79%	
D V D	512	60.41%	66.82%	74.72%	79.26%	77.10%	79.48%	87.41%	89.72%	
SVD + mbit on in m	256	62.29%	68.16%	71.57%	76.68%	80.74%	82.42%	85.47%	87.99%	
SVD+whitening	512	62.13%	68.13%	71.07%	76.06%	81.44%	82.82%	85.23%	87.62%	

Experiments (con't)

Quality demonstration of the SCDA feature

Classification accuracy

Table 5. Comparison of classification accuracy on four fine-grained datasets. The "details" column is a short description of the implementation details. ("f.t." stands for "fine-tune", and "h.flip" is short for "horizontal flip".)

Method	Train phaseTestBBoxPartsBBox		hase Test phase		Details	Dim.	Birds	Dege	Flowers	Pets
Method			BBox	Parts	Details		Dirus	Dogs	<i>F</i> lowers	reis
PB R-CNN with BBox [4]	\checkmark	\checkmark	\checkmark		Alex-Net; f.t. on whole images and parts; with crops	12,288	76.4%	_	_	_
Deep LAC $[5]$	\checkmark	\checkmark	\checkmark		Alex-Net; f.t. on whole images and parts; with crops	12,288	80.3%	_	_	_
PB R-CNN [4]	\checkmark	\checkmark			Alex-Net; f.t. on whole images and parts; with crops	12,288	73.9%	_	_	_
Two-Level [6]					VGG-16; f.t. with part proposals	16,384	77.9%	_	_	_
Weakly supervised FG [9]					VGG-16; f.t. with h.flip	262,144	79.3%	80.4%	_	_
Constellations [7]					VGG-19; f.t. with h.flip; with part proposals	208,896	81.0%	$68.6\%^{1}$	95.3%	91.6%
Bilinear [8]					VGG-19 and VGG-M; training with h.flip	262,144	84.0%	_	_	_
Spatial Transformer Net [34]					Inception architecture; training with h.flip and crops	4,096	84.1%	_	_	_
Ours					VGG-16; f.t. with h.flip; w/o crops	4,096	80.5%	78.7%	92.1%	91.0%

Conclusions

- solely using a CNN model pre-trained on <u>non-fine-grained</u> tasks
- the proposed SCDA: <u>unsupervised</u> and <u>without</u> additional learning
- satisfactory retrieval results and corresponding to semantic visual attributes

Conclusions

- solely using a CNN model pre-trained on <u>non-fine-grained</u> tasks
- the proposed SCDA: <u>unsupervised</u> and <u>without</u> additional learning
- satisfactory retrieval results and corresponding to semantic visual attributes

Future work

- We consider including the selected descriptors' weights to find parts.
- We also want to explore the possibility of pre-trained models for <u>more complicated</u> vision tasks, e.g., object segmentation unsupervised.

Thank you!